
www.manaraa.com

DEVELOPMENT AND VALIDATION OF NEW ALGORITHMS TO IMPROVE
CONTACT DETECTION AND ROBUSTNESS IN FINITE ELEMENT

SIMULATIONS

by

Umashankar Mahadevaiah

B.E. in Mechanical Engineering, August 1999, Bangalore University
M.S. in Civil & Environmental Engineering, August 2003, The George Washington

University

A Dissertation submitted to

The Faculty of
The School of Engineering and Applied Science

of The George Washington University in partial fulfillment
of the requirements for the degree of Doctor of Philosophy

May 17, 2009

Dissertation directed by

Dhafer Marzougui
Assistant Research Professor of Civil Engineering

and

Azim Eskandarian
Professor of Engineering and Applied Science

www.manaraa.com

3344428

3344428
 2009

www.manaraa.com

ii

The School of Engineering and Applied Science of The George Washington University

certifies that Umashankar Mahadevaiah has passed the Final Examination for the degree

of Doctor of Philosophy as of January 23, 2009. This is the final and approved form of

the dissertation.

DEVELOPMENT AND VALIDATION OF NEW ALGORITHMS TO IMPROVE
CONTACT DETECTION AND ROBUSTNESS IN FINITE ELEMENT

SIMULATIONS

Umashankar Mahadevaiah

Dissertation Research Committee:

 Dhafer Marzougui, Assistant Research Professor of Civil Engineering,

 Co- Director

 Azim Eskandarian, Professor of Engineering and Applied Science,

 Co-Director

 Majid Taghizadeh Manzari, Professor of Civil Engineering,

 Committee Member

 Sameh S. Badie, Associate Professor of Civil Engineering,

 Committee Member

 Cing-Dao (Steve) Kan, Associate Research Professor of Engineering,

 Committee Member

www.manaraa.com

iii

Acknowledgments

First of all, I would like to express my sincere gratitude to Dr. Dhafer Marzougui,

who has been my research advisor and supervisor since the beginning of my study. He

has been a friend, a teacher and a colleague and provided me with many helpful

suggestions, advice and constant encouragement during the course of this work.

I also would like to express my appreciation to my advisor Prof. Azim Eskandarian

for his academic supervision, personal support and constant motivation throughout all my

years in graduate school.

Special thanks are due to Dr. Cing-Dao Kan for his support throughout my graduate

studies. I would like to acknowledge the financial, academic and technical support he

provided me as the Director of the National Crash Analysis Center.

My keen appreciation goes to Prof. Majid Manzari, Prof. Samie Badie and Dr.

Kenneth Opeila for taking time from their busy schedule to serve as my committee

members.

Sincere thanks are extended to Jason Mader, Pradeep Mohan, Murat Buyuk and all

my other colleagues and friends at the National Crash Analysis Center for their assistance

and willingness to share their knowledge and skills.

Lastly, but most importantly, my special appreciation goes to my family for the love

and support they provided me through my entire life. My gratitude to them is beyond

words.

www.manaraa.com

iv

Abstract of Dissertation

Development And Validation Of New Algorithms To Improve Contact Detection

And Robustness In Finite Element Simulations

Approximately half of all numerical problems in crashworthiness analysis involve

impact dynamics, and accurate contact algorithms are critical to capture the structures’

behavior. Conventional contact algorithms use the principle of preventing ‘slave’ nodes

from penetrating ‘master’ segments. Only nodes are checked in these contact algorithms

and the connectivity of the nodes (in the slave side) are not considered. Additionally, to

achieve efficiency, the conventional contact algorithms use different methods to

eliminate element pairs that would unlikely come in contact and simplify the geometry

while searching for penetration between the contact pairs. These eliminations and

simplifications, sometimes, cause inaccuracy in the results.

In this research, a new contact algorithm has been developed and implemented in an

explicit nonlinear large displacement finite element code (DYNA3D). A new global

search method and a new local search method for contact search have been implemented

in the algorithm. The new global search method uses the concept of enclosing spheres

around nodes combined with bucket-sorting. Unlike in the current algorithms where

bucket-sort checks for presence of nodes in the buckets, bucket-sort in the new global

search check for intersections of enclosed spheres with the buckets. In the new local

search method, effort is made to represent accurate geometry of the contact surface. The

element surfaces are offset by their thickness and, edges and corners are represented

www.manaraa.com

v

using beams of circular cross-section and spheres respectively. Using this configuration,

problems associated in finding penetration in a skewed mesh are eliminated.

Constant stiffness that is used in computing contact force in current contact

algorithms is replaced by exponentially varying stiffness in the new contact algorithm.

When compared to the constant stiffness, the varying stiffness applies significantly higher

forces when the penetration becomes large.

The new contact algorithm has been implemented in DYNA3D and validated.

Element level and component level examples have been used to check accuracy of the

contact algorithm. Using these examples, gap between the contact surfaces and stress

variation along the contact surface are checked. Using the new contact algorithm, the gap

distance was found to be accurate and stress variation was found to be minimal.

The new contact algorithm has few limitations which need to be addressed before it

can be used to solve general three dimensional problems. Provisions should be made to

the contact algorithm to include segments from solid elements, and rectangular & varying

cross-sectional beam elements in the contact and to delete failed elements from the

contact. Care should be taken not to include severely warped elements and initially

penetrated elements in the contact definition.

www.manaraa.com

vi

Table of Contents

Acknowledgments .. iii

Abstract of Dissertation .. iv

Table of Contents ... vi

List of Figures .. ix

List of Tables ... xii

1. INTRODUCTION .. 1

1.1 Background .. 1

1.2 FEM in Engineering Analysis .. 2

1.3 Problem .. 4

1.4 Contributions of this research .. 6

1.5 Research overview ... 6

2. LITERATURE REVIEW .. 8

2.1 Review of contact algorithms ... 8

2.1.1 Global Search Algorithms ... 10

2.1.2 Local Search Algorithms .. 18

2.1.3 Contact Mechanics .. 32

2.2 Need for a new contact algorithm .. 35

2.3 Contact Validation Tests .. 38

www.manaraa.com

vii

2.3.1 Hertz Contact Test .. 38

2.3.2 Contact Patch Test .. 41

3. DYNA3D OVERVIEW .. 43

3.1 Explicit Finite Element Method ... 44

3.1.1 Principle of virtual work ... 44

3.1.2 Time discretization .. 49

3.2 Time Step Criteria .. 50

3.3 Contact Interface Equations ... 51

3.3.1 Impenetrability condition .. 53

3.3.2 Traction conditions ... 54

3.4 DYNA3D Source Code .. 55

4. CONTACT ALGORITHM IMPLEMENTATION 60

4.1 Contact algorithm considerations ... 61

4.2 Contact algorithm limitations ... 62

4.3 Global search (sphere-bucket-sort algorithm) .. 63

4.4 Sorting frequency ... 69

4.5 Local Search ... 70

4.5.1 Beam-to-beam penetration check ... 71

4.5.2 Beam-to-triangle penetration check .. 73

4.6 Penalty calculations .. 75

www.manaraa.com

viii

4.7 New contact algorithm implementation ... 79

4.7.1 Modifications to the source code .. 81

4.7.2 Added subroutines .. 81

5. VALIDATION OF NEW CONTACT ALGORITHM 86

5.1 Element level validation ... 86

5.1.1 Example 1 (Nodes to surface) ... 87

5.1.2 Example 2 (Surface to surface) ... 89

5.1.3 Example 3 (Edge to surface) ... 91

5.1.4 Example 4 (Edge to edge) ... 92

5.1.5 Example 5 (Multiple contacts) .. 95

5.2 Component level validation ... 99

5.2.1 Example 6 (Impact between two tubes) .. 100

5.2.2 Example 7 (Crushing symmetric tube between rigid walls) 104

5.2.3 Example 8 (Hertz contact problem) .. 107

5.2.4 Example 9 (Contact patch test) ... 111

5.3 Application problems ... 117

5.3.1 Example 1 (Impact between fender and cable guardrail) 118

5.3.2 Example 2 (Impact between bumper and concrete barrier) 120

6. CONCLUSIONS AND RECOMMENDATIONS 122

REFERENCES .. 127

www.manaraa.com

ix

List of Figures

Figure 2‐1 One‐, two‐ and three‐dimensional bucket sorting .. 11

Figure 2‐2 Non‐intersecting and intersecting pair ... 13

Figure 2‐3 Contact territories of a node, an edge and a segment... 14

Figure 2‐4 Contact‐ and segment‐territory of a segment ... 16

Figure 2‐5 Determination of nearest master node .. 19

Figure 2‐6 Projection of slave node on to nearest master segment ... 20

Figure 2‐7 Incorrectly identifying nearest master node in a severely deformed mesh 22

Figure 2‐8 Undetected penetration .. 22

Figure 2‐9 Elements embedded in pinballs ... 23

Figure 2‐10 Surface mesh normal of node I... 25

Figure 2‐11 Inside‐Outside check on a 4‐node segment .. 26

Figure 2‐12 Parametric surface patch and surface patch ... 27

Figure 2‐13 Pinball hierarchy of 4‐node shell element .. 30

Figure 2‐14 Detection of penetration using pinballs.. 30

Figure 2‐15 Different splittings of quadrilateral element .. 31

Figure 2‐16 Surface‐to‐surface and edge‐to‐surface failure ... 36

Figure 2‐17 Ambiguous situation during nodes‐to‐surface contact .. 37

Figure 2‐18 Multiple contacts ... 37

Figure 2‐19 Hertz contact of two nonconforming elastic bodies .. 39

Figure 2‐20 Sphere on a flat plate and sphere in a spherical cup ... 40

Figure 2‐21 Simple contact patch test problem ... 42

Figure 3‐1 A general three‐dimensional body ... 44

Figure 3‐2 Notations of two bodies in contact .. 51

Figure 3‐3 Simplified flow chart for DYNA3D .. 58

Figure 3‐4 Flow chart for solution phase in DYNA3D ... 59

www.manaraa.com

x

Figure 4‐1 Concept of spheres enclosing nodes ... 66

Figure 4‐2 Bucket pointers and single‐index bucket numbers ... 68

Figure 4‐3 An example of intersecting pair ... 70

Figure 4‐4 Geometric surface of a beam seen by contact algorithm .. 71

Figure 4‐5 Notations used in beam‐to‐beam check algorithm ... 71

Figure 4‐6 Various configurations of beams’ contact .. 73

Figure 4‐7 Notations used in beam‐to‐triangle check .. 74

Figure 4‐8 Penetration‐Force curve .. 78

Figure 4‐9 Shape functions while applying force ... 79

Figure 4‐10 Flow chart for the new contact algorithm .. 85

Figure 5‐1 Initial configuration and velocity vector of Example 1 .. 87

Figure 5‐2 Distance between two plates ... 88

Figure 5‐3 Failure to detect penetration using single surface contact .. 88

Figure 5‐4 Initial configuration and velocity vector of Example 2 .. 89

Figure 5‐5 Distance between the elements ... 90

Figure 5‐6 Initial configuration and velocity vector of Example 3 .. 91

Figure 5‐7 Distance between the elements ... 92

Figure 5‐8 Initial configuration and velocity vector of Example 4 .. 93

Figure 5‐9 Distance between the contacting edges ... 94

Figure 5‐10 Different behaviors of slave nodes in nodes‐to‐ surface contact ... 95

Figure 5‐11 Initial configuration and velocity of Example 5 ... 96

Figure 5‐12 Two different behaviors of slave nodes when using single‐surface contact 96

Figure 5‐13 Distance between edges when using single‐surface contact ... 97

Figure 5‐14 Distance between edges when using nodes‐to‐surface contact .. 98

Figure 5‐15 Distance between the edges when using new contact algorithm .. 99

Figure 5‐16 Configuration when elements are in contact .. 99

Figure 5‐17 Contact‐impact between two tubes ‐‐ Geometry and initial conditions 101

www.manaraa.com

xi

Figure 5‐18 Contact‐impact between two tubes ‐‐ Undeformed FE model ... 101

Figure 5‐19 Contact‐impact between two tubes ‐‐ Stress configuration ... 103

Figure 5‐20 Symmetric tube crush ‐‐ Initial configuration of full and quarter model 104

Figure 5‐21 Symmetric tube crush ‐‐ Stress configuration ... 106

Figure 5‐22 Finite element configuration of the Hertz contact problem .. 107

Figure 5‐23 Configuration (a), stress distribution (b) using current contact interfaces 109

Figure 5‐24 In‐plane stress distribution using new contact algorithm .. 109

Figure 5‐25 Simple contact patch test problem ... 111

Figure 5‐26 Mesh configuration (a) and stress distribution (b) using DYNA3D 112

Figure 5‐27 Stress (V‐M) distribution in configuration‐1 using new contact algorithm 114

Figure 5‐28 Nodal displacements along contact surface, new contact algorithm, cofiguration‐1 114

Figure 5‐29 Stress (V‐M) distribution in configuration‐2 using new contact algorithm 115

Figure 5‐30 Nodal displacements along contact surface, new contact algorithm, configuration‐2 115

Figure 5‐31 Stress (V‐M) distribution in configuration‐3 using new contact algorithm 116

Figure 5‐32 Nodal displacements along contact surface, new contact algorithm, configuration‐3 116

Figure 5‐33 Distance between two plates along the contact surface, configuration‐1 117

www.manaraa.com

xii

List of Tables

Table 4‐1 New and modified subroutines ... 84

Table 5‐1 Comparison of Hertz contact problem values between different codes................................ 111

Table 5‐2 Maximum Von‐Mises Stress from three different configurations ... 113

www.manaraa.com

1

1. INTRODUCTION

1.1 Background

Automobile crashworthiness and highway safety have been receiving significant

attention in the past several years. The term ‘crashworthiness’ is understood to denote the

ability of a vehicle structure and any of its components to deform plastically and yet

maintain a sufficient survival space and thus protect the occupants in survivable crashes.

Not only good design of automobiles, but also better design of highway and roadside

hardware are required. Roadside hardware such as effective traffic barrier system, crash

cushions, end terminals, break-away devices, truck-mounted attenuators and others must

be used to achieve the highest levels of highway safety.

Crashworthiness of a vehicle and performance of roadside hardware have been

studied mainly by physical testing. However, physical testing along with analytical or

numerical simulations are preferred since it is cost-effective and can obtain much more

detailed information on the involved phenomena. Three types of analytical models are

used to simulate vehicle structures – Lumped Parameter (LP) models, Finite Element

(FE) models and hybrid models. Over the years, these models progressed from simple

analytical model, tuned one or more parameters to fit a specific test, to a complex model

with great geometric details and material properties. Even then, the most detailed models

(LP or FE) developed to date are considered approximations of a highly complex non-

linear system that is often subject to large non-linear elastic-plastic deformations. Hence,

www.manaraa.com

2

advances in understanding complex system performance such as crashworthiness can be

achieved by increasingly including more details and making the analytical models

represent as close as possible the physical components of the actual structures in

geometry, material characteristics, connections, and contact interactions.

It is important to note that numerical simulations are not aimed at lowering the

normal workload of test laboratories. Testing will still be needed for the verification and

certification of vehicle prototypes or safety systems for many years to come. The

contribution of simulation lies in that it complements the testing by making the design

and analysis process more efficient and cost effective. The strength of simulation lies in

rapidly performing simulations in the form of parametric studies that allow quick

elimination from prototyping those designs which have a high probability of not

satisfying the testing criteria. The ideal process is one of a design, heavily supported by

analysis, resulting in building of only those prototypes or systems that are almost certain

to pass final verification testing. When a safety-related problem appears in a

prototype/safety-system during a test, it is simulation that allows for diagnosis of the

cause of the problem and selection of an appropriate structural modification in a minimal

amount of time. Extensive use of numerical simulation has enabled the safety engineers

and motor vehicle industry to make increasingly safer roads and automobiles in less time

without a significant increase in testing costs.

1.2 FEM in Engineering Analysis

The finite element analysis (FEA) is firmly established as a powerful and popular

analysis tool. It provides solutions to problems that would be difficult to solve by

classical analytical methods. At present, it is applied to many different problems of

www.manaraa.com

3

continua but is most widely used in engineering analysis of solids and structures. Testing

of prototypes is increasingly replaced by simulation with nonlinear finite element

analysis because this provides a more rapid and less expensive way to evaluate design

concepts and design details. FEA uses numerical technique called finite element method

(FEM).

The object or system to be analyzed is represented by a geometrically similar

model consisting of multiple, linked, simplified representations of discrete regions called

“elements”. The elements are connected to one another at points called nodes or nodal

points. Each node has various degrees of freedom (d.o.f) depending on the type of

analysis and physical constraints applied on it. Equations of equilibrium, in conjunction

with applicable physical constraints are applied to each element/node, and a system of

simultaneous equations is constructed. These equations are solved to determine unknown

values of d.o.f using appropriate numerical techniques.

Analysis can be classified into linear analysis or nonlinear analysis depending on

the problem. Nonlinearity in the problem can be due to material nonlinearity or geometric

nonlinearity. Analysis can also be classified into static analysis or dynamic analysis

depending on the loading conditions.

Finite element analyses of vehicle crashworthiness and evaluations safety

performance of systems are among the most challenging nonlinear problems in structural

mechanics. The solution obtained from a finite element simulation is an approximation of

the exact solution. A finite element simulation can be seen as a chain with two objects.

The first link is the numerical model, essentially a complicated spring-mass system

www.manaraa.com

4

whose dynamic behavior is an approximation of the continuum that is to be modeled. The

second link is the software or the numerical algorithm that has to perform a numerical

time integration of ordinary differential equations that govern the behavior of the model.

1.3 Problem

Approximately half of all numerical problems in crashworthiness analyses involve

impact dynamics and accurate contact algorithms are critical to capture the structures’

behavior. Conventional contact algorithms use the principle of preventing ‘slave’ nodes

from penetrating ‘master’ segments. In other words, a well-defined set of nodes is not

allowed to penetrate an equally well-defined set of segments. If the nodes and segments

are on different surfaces, a master-slave contact definition is used. If they are on the same

surface, a single surface contact definition, where each node of the surface is not allowed

to penetrate any segment on the same surface that is not connected to that node, is used.

Only nodes are checked in conventional contact algorithms and the connectivity of the

nodes (in the slave side) are not considered in the contact algorithm.

Edge-to-edge penetration was not a significant problem in early simulations

because contacts between convex surfaces with low curvature were considered and

consequently node-to-segment contact algorithms have ability to detect all the occurring

penetrations. This is no longer the case for certain structures such as automotive

structures. These structures have complex surfaces with high curvatures resulting in

surfaces with several kinks and edges. In these situations, preventing the nodes from

penetrating the segments is not sufficient to keep the surfaces from penetrating each

other. Edge-to-edge penetrations can occur and go undetected causing nodes to move to

the opposite side of the segments. Further movements of the penetrated nodes often lead

www.manaraa.com

5

to high contact forces and consequently unrealistic response of the structure. Figure 1-1

shows some of the problems with conventional contact algorithms.

Figure 1-1 Problems with conventional contact algorithms

Additionally, to achieve efficiency, current contact algorithms simplify the

geometry while searching for contact pairs and eliminate element pairs from local search

that would unlikely come in contact. Depending on the elimination process used by the

contact algorithms, sometimes element pairs that would come in contact are eliminated.

The simplification of geometry and elimination of contact element pairs cause inaccurate

results.

Hence to make numerical algorithms much more robust, it is necessary to have an

accurate contact algorithm which (i) identifies all contact possibilities, (ii) accurately

checks for contact and penetration between the segments (surface to edge as well as edge

to edge) at all times and (iii) eliminates numerical instability due to high contact forces.

Although much has been done in the development of contact algorithms, there is

still scope for improvement regarding both the efficiency and the reliability of the

algorithms. An ideal contact algorithm is one which is as accurate as the brute search

Master surface Slave node

www.manaraa.com

6

method (brute search method is one in which every node/element is checked for

penetration against every other element in every cycle) with a reasonable amount of

computation time.

1.4 Contributions of this research

The objective of this study is to develop a contact algorithm that addresses some

the deficiencies mentioned above. The algorithm is implemented by adding several

FORTRAN subroutines in the general finite element code DYNA3D (Whirley, 1993).

New methods for global search and local search that resolve the contact issues are

developed. In the new global search method, efforts are made to identify every element

pair that could come in contact. In the new local search method, accurate representation

of geometry is considered while searching for penetration. In this research, only 1-

dimensional beam elements and 2-dimensional shell elements are considered in the

contact. The algorithm is however coded in such a way that the 3-dimensional solid

elements can be easily included in the contact. Additionally, in this research, more focus

is given to the accuracy of the algorithm than its efficiency. The developed subroutines

can be further optimized, by software developers, to minimize computational costs.

1.5 Research overview

Different steps are involved in developing the new contact algorithm and

implementing it in DYNA3D and these steps are presented in the following chapters. In

Chapter 2, a brief overview of finite element method theories and contact-impact are

given. An extensive review of literature on contact mechanics and the recent work in the

same area is presented. The concept behind various contact algorithms that are currently

www.manaraa.com

7

available is presented along with their advantages and limitations. Theory behind

different contact enforcing mechanics is also presented.

In Chapter 3, an overview of the non-linear finite element code “DYNA3D” that

is used in this study is presented. Some of the theories used to implement the various

features in DYNA3D are explained along with a summary of DYNA3D code.

In Chapter 4, the concept used in the proposed contact algorithm is explained. The

methods incorporated for the global and local searches are explained in detail. The

subroutines that are added and subroutines that are modified to implement the contact

algorithm in DYNA3D are presented.

Next step in developing the algorithm involved validation by simulating problems

that have analytical solutions. In Chapter 5, problems that are used in the validation

process and results from the simulations are presented.

Several examples were simulated using the proposed contact algorithm to show the

differences and improvements over current DYNA3D contact algorithms. The results

from these comparisons are presented in Chapter 6.

Finally, concluding remarks and recommendations for future research are presented

in Chapter 7.

www.manaraa.com

8

2. LITERATURE REVIEW

Accurate and efficient contact algorithms play an important role in structural

analyses and vehicle crashworthiness simulations. Hence improvement of existing

contact algorithms and development of new ones have been given importance in the field

of finite element analysis.

Contact algorithms have seen significant improvements since the beginning of finite

element computer programs in late 1960s and early 1970s. There has been numerous

published works on numerical methods of analysis of contact interactions. All relevant

work has been reviewed and analysis of various contact search methods is presented in

this chapter.

2.1 Review of contact algorithms

Contact algorithms can be broadly classified according to the concept utilized for

the description of motion of a continuous medium: Lagrangian and non-Lagrangian. In

Langrangian contact algorithms, the nodes move with the velocity of the material

medium. In non-Lagrangian, the nodes either are fixed (Eulerian algorithms) or move

independently of the material medium (Arbitrary Lagrangian-Eulerian, ALE, algorithms).

The contact algorithm may be considered as consisting of two parts. The first part

is a search algorithm which is used to detect and measure overlap or interpenetration of

regions of the structure. The second part accounts for the mechanics of contact by

www.manaraa.com

9

applying appropriate interface tractions between surfaces in contact and, depending on

the algorithm in use, may modify displacements, velocities, and/or accelerations to be

consistent with the current contact constraints. Contact algorithms can also be classified

into two main categories based on the procedure they use to prevent interpenetration:

Lagrange multiplier method and penalty method. Two more methods are derived from

these methods and they are augmented Lagrangian method and perturbed Lagrangian

method. These methods are explained later in section 2.1.3.

The current contact algorithms use the principle of preventing “slave” nodes from

penetrating “master” segments. Slave and master are designations given to distinguish

two bodies or entities or elements. A segment corresponds to a 4-node shell, a 3-node

shell or a face of a brick element. The number of operations required for searching for

contact pairs, “node-segment”, is proportional to the square of the number of contact

segments or nodes. For problems with large number of nodes, this process requires

significant computational effort and may lead to non-practical times for solving the

problem. Hence, the search process is divided into two or more levels to accelerate the

process of detection of contact pairs. The two levels are usually referred to as the global

search and the local search.

On the global search level, the regions of possible contact are searched among

groups of neighboring nodes. The groups of nodes that lie far away from the region of

possible contact and, therefore, not involved in the contact are rapidly discarded. On the

local level, contact pairs are identified by the violation of impenetrability constraint or by

a sufficient proximity criterion.

www.manaraa.com

10

Few of the well-known global search algorithms are, the bucket sorting algorithm

(Belytschko, 1987; Benson, 1990; Hallquist 2005), the spherical sorting algorithm

(Papadopoulos, 1993), the hierarchy-territory algorithm (Zhong, 1996), and the linear

position code algorithm (Oldenburg, 1994). Several local search algorithms that have

been proposed are pinball algorithm (Belytschko, 1989; Hallquist, 1985), node-to-

segment algorithm (Belytschko, 1991; Hallquist 2005), and inside-outside algorithm

(Wang, 1997). Based on the similar concepts as these local search algorithms, several

other algorithms have been developed to improve accuracy and efficiency of the search.

To name a few, free-formed-surface (FFS) algorithm (Wang, 2001), no-binary-search

(NBS) algorithm (Munjiza, 1998), algorithm using space-filling curve (SPC) (Diekmann,

2000), direct localization using pinball algorithm (Petkevicius, 2003), splitting pinball

algorithm (Belytschko, 1993) and parallel contact algorithm (Malone 1994). Each of

these contact algorithms is described briefly with their strengths and weaknesses.

2.1.1 Global Search Algorithms

2.1.1.1 Bucket­Sort Algorithm

Bucket-sort algorithm (Hallquist, 2005) is the most commonly used global search

algorithm and it generates a reasonable neighborhood definition. The contact surface is

divided into number of ‘buckets’. The term ‘bucket’ is used instead of ‘neighborhood’ in

computer science literature. Each node is assigned a bucket number and all nodes with

the same number define a neighborhood. The buckets are sized such that if a node is

compared to all of the segments having nodes in its bucket to the left or the right, all

possible overlap pairs are obtained. In two and three dimensions buckets are nested. In

www.manaraa.com

11

two dimensions, each bucket is a square, and is surrounded by eight neighbors. Each

node is compared against all the nodes in its bucket and the eight neighboring buckets. In

three dimensions, each bucket is a cube and surrounded by 26 buckets, forming a 3 x 3 x

3 cube. The dimensions of the buckets do not have to be the same in all directions.

Figure 2-1 shows one-dimensional, two-dimensional and three-dimensional bucket

sorting.

Figure 2-1 One-, two- and three-dimensional bucket sorting

The smaller the bucket-size the fewer nodes in each bucket, and consequently the

smaller the number of segment comparisons. A smaller bucket size, however, allows the

possibility of missing an overlapping/intersecting pair.

Sorting is not done at every time step in explicit analysis as it becomes

computationally very expensive. The results of a sort are used for several time steps

www.manaraa.com

12

because the incremental displacements over a time step are small relative to the mesh

dimensions. But in implicit analysis, where the time step is significantly larger and the

displacements are greater over each time step, a complete sort is performed at the

beginning of every time step. In an explicit calculation, the three nearest neighbors are

stored after each sort, and the closest node is calculated from them each time step. No

local search is performed if the nearest neighbor is greater than a bucket away. By

adopting this strategy, a complete sort is done every five to twenty time steps.

The main advantage of this algorithm is that it is about 150 to 800 times faster

than a brute force global search when it is three-dimensional analysis. A drawback of this

algorithm is that it is likely to fail if the contact surfaces become highly distorted

compared to their initial configurations, due to the restriction of the search to the closest

neighborhood of each contacting node.

2.1.1.2 Spherical­Sorting Algorithm

Spherical-sorting algorithm (Papadopoulos, 1993) uses the idea of a pinball

algorithm (Belytschko, 1989) to decide whether a local search is needed between a

contact pair. Pinball algorithm is explained in detail later in this chapter. In spherical-

sorting algorithm every element face is superscribed in an imaginary sphere of the

smallest possible radius. Then every pair of faces from the two surfaces is checked for

intersection of corresponding spheres. Non-intersecting pairs are discarded and

intersecting pairs are checked for local contact. Figure 2-2 shows example of a non-

intersecting pair and an intersecting pair.

www.manaraa.com

13

Figure 2-2 Non-intersecting and intersecting pair

The advantage of this algorithm is that it is quick to decide if a local search is

needed between a contact pair once the radii of enclosed spheres and their centers are

computed. But the disadvantage is that every pair is checked for intersection at every

cycle. Even though it is simple to check a pair just by finding distance between centers

and comparing it with sum of radii of the pair, a large number of elements in the contact

will substantially increase the time required for each cycle compared to bucket-sort.

2.1.1.3 Hierarchy­Territory Algorithm

In Hierarchy-territory algorithm (HITA) (Zhong, 1996; Belytschko, 1993),

hierarchical relation in a contact system along with contact territory is used. Contact

hierarchy and contact territory are defined.

A contact system may contain one or more contact bodies, a contact body may

contain one or more boundary surfaces, a contact boundary may be divided into several

contact segments, and a contact segment may contain three or more contact edges. A

contact segment is defined using two or more contact nodes. In each system multi level

hierarchical is obtained which contains contact bodies, contact boundaries, contact

www.manaraa.com

14

segments, contact edges and contact nodes. In the pyramid of hierarchy, the contact

system is at the top and the contact nodes are at the bottom.

Contact territory of segments, edges and nodes are defined. Contact territory of a

segment is defined using the contact edges, outward unit normal vector and thickness.

For an edge, outward normal vectors and thicknesses of the segments it shares are

considered. For a node, all the possible unit normal vectors that belong to the edges that

share the node, and thickness, are used to define the contact territory. Figure 2-3 shows

the contact territories of a node, an edge and a segment.

Figure 2-3 Contact territories of a node, an edge and a segment

To find whether or not a given contact node lies outside the contact territory of a

contact object, the hierarchy territory is used. Hierarchy territory of a segment is a box

with its upper and lower limits are obtained by maximum and minimum values of the

contact territories of entities in the hierarchy below it. For a reliable search, hierarchy is

expanded by a small amount, and it is known as expanded territory. When territories at

the same hierarchical level are tested, the absence of a common territory means that

further testing on lower-level hierarchical elements can be trivially rejected. When a

common territory is detected, the search proceeds with testing between elements on the

lower levels of the hierarchy, which are enclosed or intersected by the common territory.

A contact node is said to form a test pair with a contact segment or a contact edge or

www.manaraa.com

15

another contact node if the contact node lies within the expanded territory of the contact

segment or the contact edge or that other contact node. Once a contact pair is formed,

local search is performed at each time step, in which the matched nodes are checked for

contact with the actual segment and the segments in the closest neighborhood of the

matched segment.

The advantage of this algorithm is that it is efficient when there are multiple

contact bodies in a contact system which may get in contact with each other only

occasionally during the time domain of interest. The drawback of this algorithm is that it

cannot generate reasonable contact territory when outward normal vectors of segments

are not in the same direction. This algorithm is well suited for simulations with contact in

small parts of the mesh and where the contact areas are not overlapping too much

(Diekmann, 2000). But in the case of large overlapping areas or nested objects, this

algorithm does not perform as good as the position code algorithms which are discussed

later in this chapter.

2.1.1.4 Linear Position Code Algorithm

Linear position code algorithm (Oldenburg, 1994) uses an idea similar to that of

the bucket sort algorithm and hierarchy algorithm. In this algorithm, each segment is

checked for the presence of contact nodes situated within the segment territory. Segment

territory is defined as the smallest cubic box that encloses the contact territory of the

segment, and contact territory of the segment is defined using outward normal and

thickness of the segment. Contact territory and segment territory of a two dimensional

segment is shown in Figure 2-4.

www.manaraa.com

16

Figure 2-4 Contact- and segment-territory of a segment

Once the contact and segment territories have been constructed, the detection of

contact nodes within the segment territories is performed with an algorithm based on

sorting and searching in one dimension. The mapping from three dimensions to one

dimension is achieved by the definition of a discrete position code. The three-

dimensional space containing the contact surfaces of the model is divided into cubic

boxes and each box is assigned a number relative to its position in the global co-ordinate

system. All contact nodes are assigned a position code corresponding to the position box

where they are currently situated. The expression for the position code is given by

zyxxzyc bbBbBBp ++= (2.1)

where cp is the position code and zyx bbb ,, are the box numbers in x, y and z dimension

respectively, and zyx BBB and , are their maximum numbers respectively. Three-level of

hierarchy is defined which consists of contact surfaces, contact segments and contact

nodes. If several contact surfaces are defined in the system, the position codes for the

contact nodes are stored in a position code vector defined for each surface. The position

code vector is processed to find out position code numbers that correspond to position

www.manaraa.com

17

boxes which are intersected by the segment territory. All contacting nodes in those

position boxes are checked for the contact with the segment.

The efficiency of this algorithm is influenced by the choice of two parameters, the

expansion of the territories and the size of the position boxes. Larger territory expansion

decreases searching frequency with increase in local search procedure. Larger position

boxes increases local search with decrease in binary search operations. Hence it depends

on the user to choose an optimal combination of the two.

The computation cost of this algorithm is n log n, where n is the number of nodes.

This algorithm is input sensitive; i.e., the cost function is only related to the input of the

system, which in this case is the number of nodes. Even when the two contact bodies are

far from each other, meaning that there are no contact element interactions to be found,

the searching algorithm will still require time of order (n log n).

2.1.1.5 Space­filling Curve Algorithm

Space-filling curve algorithm (SPC) (Diekmann, 2000) is a variant of the linear

position code algorithm, which is used for global contact search. Instead of row-wise

ordering like in the position code algorithm, SPC uses numbering technique that follows

a space-filling curve.

The row-wise ordering implies one major disadvantage: Segments which are

oriented vertically are more expensive than horizontal ones (Diekmann, 2000). To

overcome this drawback, SPC algorithm uses a curve which visits all boxes in some kind

of N-like order (Lebesgue curve). This curve is defined in a recursive manner and

preserves high locality.

www.manaraa.com

18

SPC algorithm divides search area into quarters. These boxes are numbered

depending on their position with the binary codes 00 (bottom left), 01 (top left), 10

(bottom right) and 11 (top right). The division is continued recursively up to certain pre-

defined level. Each child box gets assigned a code which is the code of its parent box

concatenated with 00, 01, 10, or 11. This gives a unique key for each box mapping the

Lebesgue curve into the searching area. A position code is then assigned to each node.

The position code is the box number the node is placed in, and all the nodes are sorted

according to it.

Two additional values, number of boxes of the lowest level in x- and y- direction

are stored for each node in order to update the position code of the nodes efficiently.

Based on the position codes, local search for contact penetration or gap is carried out.

2.1.2 Local Search Algorithms

2.1.2.1 Node­to­segment Algorithm

Node-to-segment algorithm (Hallquist, 1985) is the most common local contact

search used in general finite element codes. It uses the principle of preventing slave

nodes from penetrating master segments. A segment corresponds to a 4-node shell, a 3-

node shell or a face of a brick element. This interface treatment may be outlined as: 1.

For each slave node, locate closest master node, and check the master segments that

include the master node to identify the segment, if any, containing the slave node. 2.

Locate the position of the slave node on the master surface. 3. Determine if slave node

has penetrated the master segment.

www.manaraa.com

19

Determination of master segment containing slave node

Consider a slave node, ns, sliding on a smooth master surface and assume that

search of the master surface has located and stored the master node, nm , lying closest to

ns, as shown in Figure 2-5. To minimize the operation count, the search for the closest

node only includes the closest node from the previous time step, old
mn and its surrounding

nodes which are available in the connectivity of the segment that contain old
mn .

Figure 2-5 Determination of nearest master node

If nm and ns do not coincide, ns can usually be shown to lie in a segment si via the

following tests:

.0)()(
,0)()(

1

1

>×•×
>×•×

+

+

ii

iii

cssc
ccsc

 (2.2)

Vectors ci and ci+1 are along edges of si and point outward from nm , and vector s is the

projection of the vector beginning at nm , ending at ns and denoted by g, on to the plane

being examined as shown in Figure 2-6.

www.manaraa.com

20

Figure 2-6 Projection of slave node on to nearest master segment

mmggs)(⋅−= (2.3)

Where .
1

1

+

+

×
×

=
ii

ii

cc
ccm (2.4)

 Determination of the contact point

Once the master segment has been located for slave node sn , the ‘contact point’

on master segment is identified. Contact point is defined as the point on the master

segment which is closest to ns.

The contact point coordinates ζ c,ηc() on si is identified by using bilinear parametric

representation,

() () ()

() () ()()jjj
j

j
iji xf

ifififr

ηηζζηζφφηζ

ηζηζηζ

++==

++=

∑
=

11
4
1, ,,

,,,,
4

1

332211

 (2.5)

ζ j , η j take on their nodal values at ±1,±1(), and x i
j is the nodal coordinate of the j th

node in the i th direction.

www.manaraa.com

21

If t is a position vector drawn to slave node ns, and r is the vector drawn to the contact

point, as shown in Figure 2-6 then following equations are satisfied.

() ()[]

() ()[] .0,,

,0,,

=−⋅

=−⋅

cccc

cccc

rtr

rtr

ηζηζ
∂η
∂

ηζηζ
∂ζ
∂

 (2.6)

Once the contact point is determined, each slave node is checked for penetration

through its master segment. If the slave node does not penetrate, nothing is done, but if it

does, an interface force is applied between the slave node and its contact point. The

magnitude of this force is proportional to the amount of penetration. Equal and opposite

forces are applied to the slave node and master segment

Magnitude of the penetration is calculated using

()[]cci rtnl ηζ ,−⋅= (2.7)

where ni is the normal vector of the master segment si. Interface force is applied if l is

negative.

The above method of contact search is very effective when the contact surfaces

are smooth and convex, and the mesh quality is good. When the elements have poor

aspect ratios, as shown in Figure 2-7, this method fails to identify the correct nearest

master segment. Also when the contact system has elements from different parts that are

not connected to each other, this method fails as it checks for new nearest node among

the nodes that are connected to the master segment from previous time step. There is no

notion of connectivity on the slave side in this contact algorithm which leads to

undetected penetration as shown in Figure 2-8.

www.manaraa.com

22

Figure 2-7 Incorrectly identifying nearest master node in a severely deformed mesh

Figure 2-8 Undetected penetration

2.1.2.2 Pinball Algorithm

The concept behind the pinball algorithm (Belytschko, 1989) is to enforce the

impenetrability condition and define the interpenetration via a set of spheres, or ‘pinballs’

which are embedded in the finite elements as shown in Figure 2-9. Each element is

embedded in different pinball, regardless of whether it is a shell or solid element. Contact

constraint is enforced on the spheres rather than the elements, and thus reducing the time

required by the contact algorithm. Checking contact and penetration between two

elements becomes computing the distance between two pinballs embedded in the

elements.

www.manaraa.com

23

Figure 2-9 Elements embedded in pinballs

In three-dimensional analysis, a sphere or pinball, is embedded in each of the

hexahedral elements of the mesh and the radius is determined by setting the volume of

the sphere equal to the volume of the element. The center of each sphere is the average of

its nodal coordinates. They are given by

∑
=

=

=

8

1

3

8
1

4
3

I

e
Iii

e

xC

VR
π (2.8)

where R is the radius of the pinball andV e is the volume of element e, Ci are the

coordinates of the center of the sphere, x Ii
e are the co-ordinates of node I of element e.

Radius of the sphere for each element is kept constant throughout the simulation

assuming the volume of the element doesn’t change.

The detection of the impacting pairs is, computationally, a very simple procedure.

The distance between the centers of each slave pinball and each master pinball is

www.manaraa.com

24

calculated and then compared with the sum of radii of the two elements. Interpenetration

is said to have occurred when the distance is less then sum of radii i.e.,

21 RRd +< (2.9)

where d is the distance between the centers of elements 1 and 2 and R1, R2 are the radii of

elements 1 and 2.

In the penalty form of the algorithm, whenever overlap of pinballs is detected,

equal and opposite forces proportional to the magnitude of the interpenetration are then

applied to the centers of the pinballs. These forces are then transferred to the nodes of the

elements in which the pinball embedded.

The advantage of this algorithm is that, it is simple and identical regardless of

what type of contact is involved. When combined with a penalty method of treatment, it

involves almost no iterative calculations or conditional statements; hence it is amenable

to vectorization. Shortcoming of this method is that it cannot be used for problems where

sliding and friction are crucial such as in crashworthiness. Inaccurate geometrical

representation and non-usage of compressible materials make this algorithm less

desirable in complicated finite element analysis. When the shell elements are thin

compared to their length, accuracy of this algorithm deteriorates. Also when two thin

shell elements are initially in contact, this method fails.

2.1.2.3 Inside­Outside Algorithm

Inside-outside algorithm (Wang, 1997) uses position vector and normal vector of

a contact point to check whether there is any penetration of this point on the contact

www.manaraa.com

25

surface. Once a contact node and contact surface pair has been identified by global

search, this algorithm determines the contact point on the contact surface and the

distance—gap or penetration—from the node to the contact point.

First the position of the contact node, either inside or outside, with respect to the

segment is defined. This can be done using either of the two methods. The first method

is based on ‘mesh-normal’ of the node. Mesh normal of a node is evaluated by averaging

all surface normal vectors of the connective elements, as shown in Figure 2-10. When the

projected point of the node along its mesh normal direction is located inside the polygon,

the node is regarded as inside the segment, else it is considered outside the segment. The

second method consists of checking relative position of the node with respect to edges of

the segment. A contact segment need is not only a 3-node or a 4-node element; it can be a

polygon of any number of sides.

Figure 2-10 Surface mesh normal of node I

For triangular segments, edge inside-outside status detection is performed three

times. Similarly, for quadrilateral segments, the detection is checked four times. Any

convex polygon can be checked using the same concept. Figure 2-11 shows the inside-

outside status check of a node on a 4-node segment.

www.manaraa.com

26

Figure 2-11 Inside-Outside check on a 4-node segment

The inside-outside status of a node is checked by considering all the edges,

assuming the segment has counterclockwise connectivity: if all edges are found “inside”

or all edges are found “outside” then the node projects inside the segment, else, the node

projects outside the segment. In the outside situation, the node is contacting the segment

from its opposite direction of the projection vector.

When the projection of node is found to be inside the polygon, the distance

between the node and the surface segment is calculated along the mesh normal vector.

Using the position vector x of a projection point, the penetration (or gap) is obtained as:

)xx(n I
tg −⋅= (2.10)

where gt > 0 means a gap (no penetration) and gt < 0 means penetration. The case where

gt = 0 indicate that the node lies on the surface segment, xI is the position vector of node

and “n” is normal vector of surface.

Important features of this algorithm are that it requires no iteration, and eliminates

multiple contact possibilities of the nodes with contact surfaces. A unique contact point is

obtained using the mesh normal of a node. Limitation of this algorithm is that surface

www.manaraa.com

27

normal of the master and slave elements should face each other. Even though polygon of

any number of sides can be used, the segment has to be convex. This algorithm may

result in error near the intersection edge of two bilinear contact segment surfaces if the

mesh of the segment surface is not fine enough.

2.1.2.4 Free­formed­surface Algorithm

Free-formed-surface (FFS) algorithm (Wang, 2001) is developed to improve the

accuracy of the contact searching by reducing inaccuracies generated during the finite

element meshing. In this algorithm, the three-dimensional contact area is approximated

with free-formed-surface patch. This is to make the geometry smooth and accurate for

contact searching and contact stress analysis.

Figure 2-12 Parametric surface patch and surface patch

A parametric surface patches are constructed to describe the continuous body

surface using the nodal coordinates, as shown in Figure 2-12. A surface patch is

constructed between two nodes using a smooth curve as shown in Figure 2-12. Each

curve segment is joined to its neighbors in a continuous fashion. Surface patches are tied

together in such a way that continuity with the neighboring patches is assured, at least to

the first-order gradient. Considering the case of four nodes of a quadrilateral segment and

www.manaraa.com

28

other eight nodes surrounding the segment, the parametric equation of the free-formed-

surface patch is given by:

() () ()∑∑
= =

−− −−=
3

0

3

0

33 11,x
i j

jjii
ij wwuucwu (2.11)

where x u,w() is the Cartesian representation of the surface patch, u and w are two

independent parameter variants in the range [0,1], and ()3,2,1,0, =jicij is the coefficient

vector.

Subdivision of the surface patch is done by dividing the patch along its curves.

Smaller sub-patches are more closed to planes than the previous sub-patch. The more the

subdivision of levels, the higher the accuracy of contact searching will be.

For each contact pair, which consists of a slave node and a master segment

formed at global searching level, a free-formed-surface patch is constructed using the

master segment nodes and the neighboring nodes. The patch is subdivided into sub-

patches depending on the accuracy level needed and the slave node is projected on to

these sub-patches in the direction normal to the sub-patches. This projection point is

checked if it lies on any of the sub-patch. If it is found on the sub-patch, then penetration

(or gap) is calculated, which is given by:

 () nxx ⋅−= sng (2.12)

where n is the unit normal vector at the contact point x.

Although it is an advantage to have no numerical iteration in this algorithm, it gets more

accurate only when the sub-patch subdivision gets smaller. About 5 subdivision levels are

www.manaraa.com

29

required to obtain acceptable accuracy. This algorithm cannot reach satisfactory results

for systems containing sharp corners or highly deformed elements. When elements

deform severely compared to their initial configuration, un-accommodated FFS patches

may be obtained by which accuracy of contact search decreases rapidly. When sharp

corners are necessary, they have to be treated differently, as two or more elements

sharing a common edge on the sharp corner as separate ones. All discrete elements are

approximated with identical spheres/discs.

2.1.2.5 Splitting Pinball Algorithm

The accuracy of the pinball algorithm deteriorates when it is applied to shell

elements that are relatively thin compared to their length. Also pinball algorithm fails

when two thin shells are initially in contact. The splitting pinball algorithm (Belytschko,

1993) is a variation of the pinball approach where the developers tried to overcome some

of the shortcomings of pinball algorithm.

As in the original pinball method, in the splitting pinball method, a pinball is

associated with each element. Unlike in original pinball method where the radius of the

pinball is calculated such that volume of pinball is equal to volume of element, in

splitting pinball method the radius is always chosen large enough so that it completely

envelopes the element. This large pinball is called the parent pinball.

Interpenetration of parent pinballs now indicates the possibility of interpenetration

of elements. Whenever overlap of parent pinballs is detected, another level of smaller

pinballs is constructed, in which the diameters of the last pinballs in hierarchy are of the

order of the thickness of the shell. Figure 2-13 shows few examples of pinball hierarchy

www.manaraa.com

30

and Figure 2-14 shows an example of interpenetration. If penetration is detected on this

level, penalty forces are applied to these pinballs. Subsequently these pinball forces are

transferred to the nodes of the associated element.

Figure 2-13 Pinball hierarchy of 4-node shell element

Figure 2-14 Detection of penetration using pinballs

The splitting pinball algorithm possesses the advantage that it is not necessary to

distinguish surface-to-surface contact from edge-to-surface contact. It doesn’t require any

special input from the user. The disadvantage of this algorithm is that the contact surfaces

are represented only by a coarse approximation. When higher order elements are used

and sliding contact and friction are very important these approximations induce error.

2.1.2.6 Direct Localization Algorithm

Direct localization algorithm (Petkevicius, 2003) uses the concept of splitting

pinball algorithm but avoiding the splitting process which decreases the efficiency.

www.manaraa.com

31

Instead of checking for penetration from the parent level pinball and keep splitting

pinballs until the diameter becomes the thickness of shell, this algorithm checks the nodal

position of one quadrilateral to that of the other quadrilateral element.

In direct localization algorithm, slave and master elements called projectile and

target elements, several pinballs are generated in the quadrilaterals of the projectile. The

higher the number of pinballs, the higher the precision is. At the lowest level, only one

pinball is generated which is located in the center of a quadrilateral finite element. When

one pinball per element does not satisfy the precision requirements, then the number of

pinballs is increased as shown in Figure 2-15.

Figure 2-15 Different splittings of quadrilateral element

The pinballs are projected onto the target element, and the distance between the center of

the pinball and its projection is calculated using equation (2.13).

() ()
() ()
() () ⎪

⎭

⎪
⎬

⎫

−=+−+−

−=+−+−
−=+−+−

zzzzzzz

yyyyyyy

xxxxxxx

PQDnPPvPPu

PQDnPPvPPu
PQDnPPvPPu

11412

11412

11412

 (2.13)

where D is the distance between the pinball center and the middle surface of the target

element; u and v are local coordinates on the target element; zx nnn y , , are projections of

www.manaraa.com

32

the vector connecting the pinball center and the target element;

zyxzyx PPPPPP 444111 , , ,..... , , are nodal coordinates of the target elements; and zyx QQQ , ,

are coordinates of the center of the pinball.

If the projectile pinball projects onto the target element and the distance D is less

than half of the sum of the thickness of the projectile and target elements, penalty forces

are computed and applied to the nodes of the projectile and target.

Although the direct localization approach has the advantage of a significant

decrease in computational time compared to the splitting pinball algorithm, it has the

disadvantage, similar to other pinball algorithms, that it doesn’t represent the actual

geometry for contact search. This becomes critical if sliding contact and friction are

important in the analysis. User has to do several simulations to identify the number of

pinballs required to get a reasonable degree of accuracy in contact search.

2.1.3 Contact Mechanics

Once the contact search is complete and the depths of penetrations are computed,

the next step is to remove the penetrations by applying appropriate forces. The forces

should be accurate in magnitude, direction, and location. The process is known as contact

mechanics and the forces are called contact constraints.

For the most part, numerical methods used for implementing contact mechanics in

transient finite element analysis may be broadly classified into either Lagrange multiplier

or penalty function methods. However, for high-velocity impact problems in which

transfer of momentum, rather than structural deformation is the dominant effect at the

www.manaraa.com

33

contact interface, a different methods based on momentum conservation have been

developed. Lagrange multiplier methods are alternatively referred to as mixed or hybrid

variational methods by some authors and penalty methods are commonly referred to as

‘contact’, ‘gap’, or ‘joint’ element methods. For transient analyses by explicit integration,

penalty methods have received the most attention in the literature and in commercial

finite element programs.

2.1.3.1 Lagrange Multiplier Method

A brief review of the classical Lagrange multiplier method is presented below

(Fortin 1983).

The finite element semi-discretized equation of motion is expressed in general form as:

 () RUUFUM =+ &&& , (2.14)

where M is the mass matrix, U is the vector of displacement degrees of freedom, U& is

the velocity, U&& is acceleration, F is the internal force vector, and R is the external force

vector. In addition to the usual prescribed boundary conditions, it is assumed that the

solution of equation (2.14) is also subject to surface contact displacement constraints.

These constraints may be expressed as:

 { } 0=+ XUG (2.15)

where X is the material coordinate vector, the sum of U and X is the spatial coordinate

vector and G is a surface contact displacement constraint matrix. The components of G

are typically unknown in the beginning and generally change as displacement and

deformation occur. Motion of slave and master nodes is tracked and as contact occurs,

displacement constraint components are introduced in G . During contact, the

www.manaraa.com

34

components of G may change with time as required to ensure that the associated contact

force reactions satisfy contact force conditions.

The Lagrange multipliers are introduced into the equation of motion to give:

() RGUUFUM =++ λT&&& , (2.16)

where the components of the Lagrange multiplier vector λ are the surface contact forces.

The Lagrange multiplier method proceeds by treating λ as unknown and solving

equations (2.15) and (2.16) simultaneously.

To summarize, Lagrange multiplier method, which solves for the unknown

Lagrange multipliers, exactly enforces the kinematic impenetrability constraints on

displacements and, when necessary, applies special impact and release conditions to

correctly determine velocities, accelerations, and tractions over the contact interface.

Since for each constraint condition a Lagrange parameter is introduced and it

appears in the list of unknowns, the dimension of the resulting system of equations will

increase. In addition, the associated tangent matrix is indefinite and has zero diagonal

entries that pose some difficulties in the solution step. In this approach, the system of

equations cannot be solved in an explicit way. The Lagrange multiplier matrix has to be

inverted at each cycle of computation. In the case of auto-contact, the number of points in

the contact can become significant and this formulation then becomes quite expensive.

Based on classical Lagrange parameter procedure, few other versions of contact

procedures are developed such as augmented Lagrangian (Fortin, 1983; Malone, 1994)

and perturbed Lagranian procedure (Simo, 1985).

www.manaraa.com

35

2.1.3.2 Penalty Methods

Unlike the Lagrange multiplier methods where addition of Lagrange parameters

increases the dimensions of the solution, the penalty methods enable one to transform the

constrained problem into an unconstrained one without introducing additional variables.

The constraint condition is now satisfied only approximately for finite values of the

penalty parameter.

The penalty method assumes from the outset that the impenetrability condition

will be violated. This results in solutions that satisfy the contact conditions only

approximately. Nodal contact forces normal to the contact surface are essentially

computed by multiplying the amount of penetration by an arbitrarily defined penalty

parameter. The accuracy of the solution depends strongly on the penalty parameter. The

choice of penalty parameters for both the normal and tangential forces is primarily

determined from numerical experience. In explicit time integration schemes, large

penalty parameters may cause numerical instability. Therefore, penalty parameters are

typically chosen conservatively at the expense of allowing greater amounts of

penetration. However, in some analyses, the penalty number is defined by the problem

itself using a specific formulation.

2.2 Need for a new contact algorithm

Although several contact-impact search methods are available, none of them are

suitable for all situations. Each of them has its own advantages and disadvantages, as

explained in the previous sections, and users have to choose among them depending on

his/her need. This can lead to the need of several simulations before Factors to consider

while choosing a contact-impact algorithm are: whether the analysis is implicit or

www.manaraa.com

36

explicit, Eulerian or Lagrangian, whether the contact surfaces are convex or concave,

type of elements used and whether the contact search is between surface-to-surface, edge-

to-surface or edge-to-edge.

Although significant progress has been achieved in the development of contact

algorithms, there is still a need for improvement in both the efficiency and the reliability

of the algorithms. The primary concerns for contact searching are computational cost,

accuracy and robustness. Conventional algorithms use the principle of preventing ‘slave’

nodes from penetrating ‘master’ segments. There is no notion of connectivity on the slave

side in a contact algorithm.

In summary, the drawbacks of the currently available algorithms:

• The determination of the interpenetration requires iteration and consequently does

not vectorize well;

• Because only interpenetration between finite elements nodes and elements are

checked, the surface-to-surface and edge-to-surface contacts shown in Figure 2-16

cannot be detected;

Figure 2-16 Surface-to-surface and edge-to-surface failure

www.manaraa.com

37

• The algorithm is ambiguous in situations such as shown in Figure 2-17. A slave

node which do not see the edges and has come to the other side of master surface

will be interpreted as a spurious penetration. To avoid such ambiguities, master

segments have to be carefully defined, i.e. a prior knowledge of the master

elements which are likely to be penetrated by slave nodes is required;

Figure 2-17 Ambiguous situation during nodes-to-surface contact

• Multiple contacts between a slave node and more than one master segment such

as shown in Figure 2-18 can cause difficulties.

Figure 2-18 Multiple contacts

• Concept of using pinballs for checking interpenetration decreases accuracy of the

geometry and hence diminishing the robustness of the contact search. This causes

Nearest master node

Slave node

www.manaraa.com

38

serious problems especially if significant sliding between the segments occurs and

also when friction between components is important.

• In complex simulations, the users might need to do several simulations before

correctly identifying all contacts. In case of pinball algorithms, they might need

more simulations to identify the level or number of pinballs to obtain the required

accuracy.

2.3 Contact Validation Tests

To address some of the problems mentioned in the previous section, a new contact

algorithm is developed and implemented in DYNA3D public code. Process of

development and implementation is explained in Chapters 4 and 5. Before the new

contact algorithm can be used with confidence, it should be assessed for accuracy and

stability. Two commonly used tests to assess the robustness of contact algorithms are: the

Hertz contact test and the contact patch test. The next sections present a summary of

these two tests.

2.3.1 Hertz Contact Test

Very few problems involving contact can be solved analytically. Contact between

the two bodies occurs over many small areas, each of which constitutes a single asperity

contact (Hertz, 1882). Well known theoretical solution on single asperity or single point

was developed in the late nineteenth century by Hertz (Adams, 2000) which has become

to known as Hertz contact problem. Hertz investigated the elastic contact of two spheres

and derived the pressure distribution in the contact area as well as the approach of the

spheres under compression. The assumptions of this problem are: (1) the contact area is

elliptical; (2) each body is approximated by an elastic half-space loaded over the plane

www.manaraa.com

39

elliptical contact area; (3) the dimensions of the contact area must be small compared to

the dimensions of each body and the radii of curvature of surfaces; (4) the strains are

sufficiently small for linear elasticity to be valid and (5) the contact is frictionless, so that

only a normal pressure is transmitted.

Figure 2-19 shows partial view of two bodies, 1 and 2, in contact. If there is no

pressure between the bodies, the contact is at one point ‘O’. When load P is applied

between the bodies, the contact area becomes elliptical.

Figure 2-19 Hertz contact of two nonconforming elastic bodies

For the case of solids of revolution, the contact area is circular. The interference

‘δ’, contact radius ‘a’ and maximum contact pressure ‘p0’ are given by

31

*4
3

⎟
⎠
⎞

⎜
⎝
⎛=

E
PRa , where

2

2
2

1

2
1

*
111

EEE
νν −

+
−

= ,
21

111
RRR

+=

31

2*

2

16
9

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

RE
Pδ ,

31

23

2*

0
6

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

R
PEp

π

www.manaraa.com

40

In the above equations, p0 is the maximum contact pressure (which occurs at

r = 0), *E is the composite Young’s modulus, 21,EE and 21,νν are the Young’s modulii

and Poisson’s ratios for the lower and upper body respectively, P is the normal load, R is

the composite radius of curvature and 21 , RR are the radii of curvature of the lower and

upper bodies respectively.

Analogous expressions may be written for the contact of two cylindrical bodies

whose long axes are parallel to the y-axis. The results for half-width of the contact strip

and the maximum contact pressure are

21

*
4

⎟
⎠
⎞

⎜
⎝
⎛ ′

=
E

RPa
π

,
21*

0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
=

R
EPp

π
 where ′P is the applied load per unit length of y-

direction.

For a sphere on a flat plate, ∞→2R , so
1

11
RR

=

And for a sphere in a spherical cup,
12

111
RRR

−=

Figure 2-20 shows the configuration of sphere on a flat plate and sphere on a spherical

cup.

Figure 2-20 Sphere on a flat plate and sphere in a spherical cup

P P

www.manaraa.com

41

2.3.2 Contact Patch Test

When it comes to an element, it is known that every ‘element’, whether it is from

a meshed approach or a meshless one, must possess certain properties to guarantee its

validity, i.e. it must be consistent and convergent (Timoshenko, 1970). Zero stress

condition during rigid body movement and constant stress condition when subjected to a

linear displacement field are the two conditions that are usually used to verify. For an

‘element’ formed in slide-line (or mesh matching) procedures, similar requirements on its

quality must hold, particularly, the preservation of uniform displacements (stress

distribution) across the interfaces under uniform loading. This in the contact context is

often called contact patch test (El-Abbbasi, 2001; Taylor, 1991; Sacco, 1995). If a contact

formulation fails this test, fictitious localized stresses will occur across the contact

surfaces. Sometimes, they become substantially large so as to undermine the prediction of

stress distributions on the interfaces.

Different researchers use different contact patch test problems to verify

consistency and stability of the contact algorithms.Figure 2-21 shows a simple contact

patch test problem used in this research. Two rectangular plates that are on the same

plane were made to contact each other on their edges. Two edges of the bottom plate and

one edge of top plate are constrained as shown in the Figure 2-21. A uniform load is

applied on the top edge of the top plate and stresses and displacements along the contact

surfaces are observed.

www.manaraa.com

42

Figure 2-21 Simple contact patch test problem

P

www.manaraa.com

43

3. DYNA3D OVERVIEW

DYNA3D is a part of set of public codes developed at the Lawrence Livermore

National Laboratory. It is a general-purpose finite element code based on explicit time

integration for analyzing the transient response of three dimensional, non-linear,

dynamic, large displacement problems. The first version of DYNA3D was released in

1976 and since then it has come a long way in its capability and user convenience. Even

though initial focus was in military applications, DYNA3D has been used in various

fields including automotive crashworthiness and roadside hardware structure analysis.

DYNA3D has numerous features that allow for the analysis of several nonlinear

dynamic problems. It has several element formulations that include one-dimensional truss

and beam elements, two-dimensional quadrilateral and triangular shell elements, two-

dimensional delamination and cohesive interface elements, and three-dimensional

continuum elements. Various material models are available to represent, a wide range of

material behavior including elasticity and plasticity, composites, thermal effects and rate

dependence. The most advantageous capability of DYNA3D over other finite element

codes is its contact algorithm. It has sophisticated contact interface capability including

frictional sliding and single surface contact.

In this chapter, a brief overview of DYNA3D features and the theory behind these

features are presented. Only the features that are relevant to this study are covered. These

include the explicit finite element method, the time step, and the contact interface.

www.manaraa.com

44

3.1 Explicit Finite Element Method

DYNA3D uses a displacement-based, Lagrangian, central-difference finite element

formulation to solve for the dynamic response of nonlinear structural problems. The

formulation makes use of Cauchy’s first law of motion and principle of virtual work to

determine the potential energy equation. The potential energy equation is then discretized

in space through the finite element mesh and shape functions. It is then discretized in

time through the explicit central difference method to derive the dynamic equations of

motion. In this section, the DYNA3D explicit finite element formulations are derived and

the theories behind these formulations are presented.

3.1.1 Principle of virtual work

In this section, first, a general three dimensional problem to be solved is stated.

Then, principle of virtual displacements, which is used as basis of finite element

solutions, is discussed and the finite element equations are derived.

Figure 3-1 A general three-dimensional body

X2
X1

X3

St

bi

Sd

di

ti

nt

V

www.manaraa.com

45

A three-dimensional body, as shown in Figure 3-1, is located in a fixed

(Lagrangian) space. The body is subjected to traction forces ti (t) (forces per unit area)

over a portion of its outer surface St, prescribed displacements di (t) over the surface Sd,

and external body forces bi (t) (forces per unit volume) over its entire volume V.

 The solution to this problem must satisfy the following differential equations:

௜௝,௝ߪ ൅ ௜ܾߩ െ ሷ௜ݔߩ ൌ 0 over the volume of the body V (3.1)

௜௝ߪ ௝݊ ൌ ௜ over the traction surface St (3.2)ݐ

௜ݔ ൌ ݀௜ over the displacement boundary Sd (3.3)

where ߪ௜௝ denotes Cauchy’s stress tensor, ߩ is the material current density, and ݊௜ is the

outward normal unit vector to the traction surface St.

Equation (3.1) is Cauchy’s first law of motion, which ensures that the linear

momentum of the system is conserved. Equation (3.2) is the traction boundary condition

which must be satisfied at each particle on the surface St. Equation (3.3) is the

displacement boundary condition equation which must be satisfied over the surface Sd.

These equations are said to state the problem in the strong form, meaning the differential

equations have to be satisfied at every point in the body or in the surface. While solving

the problem numerically using the finite element method, the problem is defined in the

weak form. In the weak form, the conditions do not have to be satisfied at every point in

the body, but only on an average or integral sense.

The weak form equation to the general problem in Figure 3.1 is derived from the

principle of virtual work. An arbitrary virtual displacement ݔߜ௜, that satisfies the

www.manaraa.com

46

displacement boundary condition in Sd, is introduced. Multiplying equation (3.1) by the

virtual displacement and integrating over the volume of the body leads to,

׬ ൫ߪ௜௝,௝ ൅ ௜ܾߩ െ ܸ݀ ௜ݔߜሷ௜൯ݔߩ ൌ 0௩ (3.4)

For equation (3.4) to be valid for any arbitrary virtual displacement, the term

between the brackets should be equal to zero, which is equivalent to equation (3.1).

Using one of the mathematical properties of differentiation,

 ൫ߪ௜௝ݔߜ௜൯
,௝

ൌ ௜ݔߜ௜௝,௝ߪ ൅ ௜,௝ (3.5)ݔߜ௜௝ߪ

and substituting for the first term in equation (3.4) leads to,

׬ ቀ൫ߪ௜௝ݔߜ௜൯
,௝

െ ௜,௝ݔߜ௜௝ߪ ൅ ௜ݔߜ ௜ܾ ߩ െ ௜ቁݔߜ ሷ௜ݔ ߩ ܸ݀ ൌ 0௏ (3.6)

From the divergence theorem, the first term of the equation (3.6) can be expressed as,

׬ ൫ߪ௜௝ ݔߜ௜൯
,௝

 ܸ݀ ൌ ׬ ൫ߪ௜௝ ݔߜ௜൯ ݊௜ ݀ܵௌ೟௏ (3.7)

Using equation (3.2), equation (3.7) can be written as,

׬ ൫ߪ௜௝ ݔߜ௜൯
,௝

 ܸ݀ ൌ ׬ ௜ ݀ܵௌ೟௏ݔߜ ௜ݐ (3.8)

From the symmetry of the stress tensor, the second term in equation (3.4) can be

expressed as,

׬ ܸ݀ ௜,௝ݔߜ ௜௝ߪ ൌ ׬ ଵ
ଶ

൫ߪ௜௝ ݔߜ௜,௝ ൅ ௝,௜൯ܸ݀௏௏ݔߜ ௝௜ߪ

 ൌ ׬ ௜௝௏ߪ ௜௝ ܸ݀ (3.9)ߝߜ

www.manaraa.com

47

where ߝߜ௜௝ is the virtual strain tensor attributed to the virtual displacement ݔߜ௜.

Substituting equations (3.8) and (3.9) into equation (3.6), we get

 െ ׬ ܸ݀ ௜ݔߜ ሷ௜ݔ ߩ െ ׬ ௜௝ ܸ݀௏ߝߜ ௜௝ߪ ൅ ׬ ௜ ܸ݀௏ݔߜ ௜ܾ ߩ ൅ ׬ ܵ݀ ௜ݔߜ ௜ݐ ൌ 0௦೟௏ (3.10)

Equation (3.10) is a statement of the principle of virtual work for the general three

dimensional problem defined in Figure 3-1.

The next step in deriving the finite element equation is spatial discretization. This

is achieved by subdividing the complex geometry of the body into small simpler shapes

called elements. The elements are interconnected at the corners through nodal points. To

establish continuity of the displacement field throughout the finite element mesh,

interpolation function, also known as shape functions, are introduced. These shape

functions establish a relationship between the displacements at inner points in the

elements and the displacements at the nodal points. Using shape functions, the

displacement at any point can be expressed as,

௜ݔߜ ൌ ∑ ఈܰ ݔߜఈ௜
௡
ఈୀଵ (3.11)

where ݔߜ௜ are the displacements at any point inside the element, n is the number of nodes

in the element, Nα is the shape function at node α, and δxαi are the displacements at node

α. Similar expressions can also be written for the coordinates, velocities and acceleration

of a point inside the element.

The finite element equations are derived by discretizing the virtual work equation

(3.10) in space. This is achieved by first writing an approximation of the virtual work

www.manaraa.com

48

equation as the sum of the potential energy at each element in the system. Equation (3.10)

can be written as,

 ∑ ቄ׬ ݀ ௜ݔߜ ሷ௜ݔ ߩ ௠ܸ ൅ ׬ ௜,௝݀ݔߜ ௜௝ߪ ௠ܸ െ ׬ ݀ ௜ݔߜ ௜ܾ ߩ ௠ܸ െ௏೘௏೘௏೘
ெ
௠ୀଵ

׬ ௜ ݀ܵ௠ௌ೟ݔߜ ௜ݐ
ൟ ൌ 0 (3.13)

where M is the total number of elements in the system and Vm is the volume of the

elements. Replacing δxi and ݔሷ௜ with the equations using shape functions, we get,

 ∑ ቄ׬ ሷఉ௜൯ ሺݔ൫ ఉܰ ߩ ఈܰݔߜఈ௜ሻ ݀ ௠ܸ ൅ ׬ ௜௝ ൫ߪ ఈܰ,௝ݔߜఈ௜൯݀ ௠ܸ െ௏೘௏೘
ெ
௠ୀଵ

׬ ௜ ሺܾ ߩ ఈܰݔߜఈ௜ሻ ݀ ௠ܸ െ ׬ ௜ ሺݐ ఈܰݔߜఈ௜ሻ ݀ܵ௠ௌ೟௏೘
ൟ ൌ 0 (3.14)

where ݔߜఈ௜ and ݔሷఈ௜ are the virtual displacement and the accelerations at the nodal points

respectively. Equation (3.14) can be simplified and rewritten as,

 ∑ ቄ׬ ݀ ఈܰ ఉܰ ߩ ௠ܸ௏೘
ቅெ

௠ୀଵ ሷఉ௜ݔ ൌ

∑ ׬ ఈܰ ߩ ܾ௜ ݀ ௠ܸ௏೘
ெ
௠ୀଵ ൅ ∑ ׬ ఈܰ ݐ௜ ݀ܵ௠ െௌ೟

ெ
௠ୀଵ ∑ ׬ ఈܰ,௝ ߪ௜௝ ݀ ௠ܸ௏೘

ெ
௠ୀଵ (3.15)

In matrix form, equation (3.15) reduces to,

 ሾMሿሼxሷ ሽ ൌ ሼFሽ (3.16)

where [M] is the mass matrix, ሼxሷ ሽ is the acceleration vector and {F} is the vector sum of

all internal and external forces. Equation (3.16) is the finite element equation that needs

to be solved in time.

www.manaraa.com

49

3.1.2 Time discretization

If the applied forces vary with time, the equilibrium equation (3.16) is a statement

of equilibrium for any specific point in time. Hence the problem discretized in time

domain and the finite element equations are satisfied at discrete points in time rather than

at all points in time within the interval of the solution. The time interval between two

successive points in time, tn and tn+1 is known as the time step Δtn Δtn = tn+1 − tn(). The

time step has significant influence on the accuracy on the explicit finite element solution.

Several direct integration methods have been developed and are classified into

implicit and explicit methods. The average acceleration (trapezoidal rule), the Fox-

Goodwin (royal road), and the linear acceleration are examples of implicit method and

central difference method is example of explicit.

DYNA3D uses central difference method for discretizing the finite element

equation in time. In this method, the velocity vector is lagged by half the time step. In

other words, the displacement and acceleration vectors are computed at times

t1,...,tn,tn+1,...,t f (where t f is the final problem time) and the velocity vector is computed

at times t1/ 2,...,tn−1/ 2,tn+1/ 2,...t f −1/ 2 . To advance to next time step, following equations are

used:

nnnn tavv Δ+= −+ 2/12/1 (3.17)

2/12/11 +++ Δ+= nnnn tvuu (3.18)

101 ++ += nn uxx (3.19)

()
2

1
2/1

+
+ Δ+Δ

=Δ
nn

n ttt (3.20)

www.manaraa.com

50

3.2 Time Step Criteria

The choice of time step is critical in explicit finite element analysis. A large time

step can make the solution unstable while a small time step can make the computation

cost expensive. To ensure stability of time integration, the global critical time step has to

be small enough such that the stress wave does not travel across more than one element at

each time increment cycle. Therefore, it is important to compute critical time step

accurately. It can be achieved using Courant criteria

c
Lt s

e =Δ (3.21)

where etΔ is the critical time step of the element, sL is the characteristic length of the

element and cis the sound speed.

For one dimensional elements, sL is the length of the element and c is given by

ρ
Ec = (3.22)

where E and ρ are the Young’s modulus and density of the material respectively. For

two-dimensional elements c is given by

()21 νρ −
=

Ec (3.23)

where ν is Poisson’s ratio. The global time step is the minimum value over all elements.

 ()N
n tttt ΔΔΔ=Δ + ,...,,min* 21

1 α (3.24)

www.manaraa.com

51

where α is a scale factor typically set some value smaller than 1 and N is the number of

elements.

3.3 Contact Interface Equations

Contact-impact algorithms in general purpose FE codes can treat interaction of

many bodies. Although the two bodies are interchangeable with respect to their

mechanics, in some equations and algorithms the bodies are distinguished as master and

slave. Nodes lying on those surfaces are referred to as master and slave nodes

respectively.

Consider two-body problem shown in Figure 3-2. Let Ω A and Ω B be current

configurations of the two bodies and S A and S B be their surface boundaries respectively.

Figure 3-2 Notations of two bodies in contact

The common contact surface (interface) S C between two bodies is defined by

BAc SSS ∩= (3.25)

www.manaraa.com

52

The contact interface is a function of time, and its determination is an important

part of the solution of the contact-impact problem. Designating body A as master and

body B as slave, the normal for master surface at any point is given by

BAA
2

^

1

^
een ×= (3.26)

where e
^

1
A and e

^
2

A are unit vectors in local coordinate system tangent to the surface.

On the contact surface

BA nn −= (3.27)

 i.e. the normals of the two bodies are in opposite directions. The velocity fields are

expressed in terms of local components by

B

T
BB

N
B

A
T

AA
N

A

v

v

vnv

vnv

+=

+=
 (3.28)

where vT are tangential velocities. The range of tangential velocities is 2 in three-

dimensional problems and single tangential vector in case of two-dimensional problem.

The normal velocities are given by:

BBB
N

AAA
N

v

v

nv

nv

⋅=

⋅=
 (3.29)

The contact adds the following conditions to the standard governing field equations: the

bodies cannot interpenetrate and the tractions must satisfy the momentum conservation

on the interface. Furthermore, the normal traction across the contact interface cannot be

tensile.

www.manaraa.com

53

3.3.1 Impenetrability condition

In a multi-body problem, the bodies must observe the impenetrability condition.

The impenetrability condition for a pair of bodies can be stated as

0=Ω∩Ω BA (3.30)

that is, the intersection of the two bodies is the null set. In other words, the two bodies are

not allowed to overlap, which can also be viewed as a compatibility condition. The

impenetrability condition is highly nonlinear for large displacement problems, and in

general cannot be expressed as an algebraic or differential equation in terms of the

displacements. The difficulty arises because in an arbitrary motion it is impossible to

anticipate which points of the two bodies will contact.

Because it is not feasible to express impenetrability condition in terms of

displacements, it is convenient to express the equations in rate form or incremental form

in each stage of the process. The rate form of the impenetrability condition is applied to

those portions of bodies which are already in contact, i.e. to those points which are on the

contact surface S C . It can be written as

 0≤−≡⋅+⋅= B
N

A
N

BBAA
N vvnvnvγ on CS (3.31)

The impenetrability condition restricts the interpenetration rate for any points on the

contact surface to be negative, i.e. when the two bodies are in contact they must either

remain in contact or they must separate.

www.manaraa.com

54

3.3.2 Traction conditions

The tractions must observe the balance of momentum across the contact interface.

Since the interface has no mass, this requires that the sum of tractions on the two bodies

vanishes:

 0=+ BA tt (3.32)

By Cauchy’s law, tractions on the surfaces of bodies are defined as,

BBB

AAA

nt
nt

⋅=

⋅=

σ

σ
 (3.33)

where σ is the Cauchy stress tensor. The normal tractions are defined by

ABB
N

AAA
N

t

t

nt

nt

⋅=

⋅=
 (3.34)

Normal component of momentum balance is obtained by taking dot product of equation

(3.32) with the normal vector n A , which gives

0=+ B
N

A
N tt (3.35)

Since adhesion between the contact surfaces in the normal direction is not considered, the

normal tractions cannot be tensile. This condition can be stated as

0≤−== B
N

A
NN ttt (3.36)

The tangential tractions are defined by

BB
N

BB
T

AA
N

AA
T

t

t

ntt

ntt

−=

−=
 (3.37)

www.manaraa.com

55

so the tangential tractions are the total tractions projected on the master contact surface.

Momentum balance requires that

 0=+ B
T

A
T tt (3.38)

3.4 DYNA3D Source Code

The source code for DYNA3D is written in FORTRAN. It consists of over 800

subroutines and more than 87,000 lines and constantly being updated and enhanced in its

capabilities. The code is vectorized to take advantage of vector registers and reduce

computation time. Since vector registers are generally some multiple of 64-bit words,

vector lengths of 64 or its multiples are used. In DYNA3D, elements are sorted by their

number, material type and connectivity and arranged them into groups of 128. Vector

processing can lead to significant jumps in execution efficiency, especially when large

amount of data has to be processed. The elements in each group are processed

simultaneously instead of computing one element at a time. Unlike a scalar processor

which process one instruction at a time, a vector processor processes multiple instructions

simultaneously as long as the operations are independent of each other, thus reducing

computation time. Vectorizing the code also improves parallel computation efficiency in

which more than one processor is used to do the computation. The vectorization process

adds complexity to the source code. Furthermore, the memory usage in DYNA3D is

minimized by storing all information in one large array. This method is very efficient

because memory is allocated only to the variables that are used in the model. This method

of sorting information adds further complexity to the source code.

www.manaraa.com

56

Because the source code is quite large, fully vectorized, and uses one array to store

all information; the task of understanding the DYNA3D source code requires a

considerable amount of time. This task, however, is made easier because the program is

well structured. Flowchart for DYNA3D source code is shown in Figure 3-3. The

flowchart is simplified for clarity.

The source code consists of three main subroutines: the input phase, the initiation

phase, and the solution phase subroutines. In the input phase, the finite element model is

read in from the input file and checked for errors. In the initiation phase, all variables are

set to their initial values and the boundary conditions such as initial velocities and nodal

constraints are imposed. These first two phases are performed once in the beginning of

the simulation and usually require very little computation time when compared to the

solution phase. In solution phase, a time integration loop based on the explicit central

difference method is executed. A flow chart of the solution phase is shown in Figure 3-4.

After each cycle of the solution phase loop, the simulation time is incremented by the

time step and the next cycle is performed. This process is repeated until the final

simulation time is reached. In a typical simulation, thousands of cycles are computed

before the final simulation time is reached. Hence, most of the computation time is

consumed in the solution phase.

During each cycle of the solution phase several steps are performed as shown in

Figure 3-4. In the first step, the accelerations are computed by dividing the nodal force by

the corresponding nodal mass. These accelerations are then modified to reflect the

imposed boundary conditions and nodal constraints. In the next step, the velocities and

displacements are updated using the central difference method equations. The pressures,

www.manaraa.com

57

concentrated loads, and body forces are then computed and added to the nodal force

vector. Next, the solid, beam, thin shell, thick shell, and discrete elements are processed

and the resulting internal forces are added to the nodal force vector. The contact forces

are then computed and incorporated in the nodal force vector. In the final step, the

simulation time is incremented by the time step and the next cycle is started.

Significant portion of the computation time in DYNA3D is spent in checking

elements for contact and updating contact force vector. Different contact interfaces are

treated differently. The most popular and commonly used contact interface is ‘single

surface contact’. The first step in this algorithm is to sort all the slave nodes and find out

the minimum and maximum coordinates in X, Y, and Z directions. These extremum

coordinates form the contact space, and this space is divided into ‘buckets’. Next, all the

slave nodes are sorted among the buckets and each node belong to one or the other

bucket. This is called bucket sorting. Next, for each node, distances between the node and

all other nodes in its bucket as well as its neighboring buckets are calculated and a nearest

master-node is identified. Among the segments connected to the master-node, the nearest

master-segment containing the slave-node is identified. And in the final stage, a slave-

node—master-segment pair is checked for penetration and forces are calculated if

penetration is found. This force is added to the nodal force vector.

www.manaraa.com

58

Figure 3-3 Simplified flow chart for DYNA3D

Read Command Line

Compute Solution
(soltn, fem3d)

End
(adios)

Read Input File
(dynai)

Initialize
Variables (initial)

Read Restart File
(restart)

Input Restart

www.manaraa.com

59

Figure 3-4 Flow chart for solution phase in DYNA3D

Compute
Accelerations

Update Nodal
Velocities

Update Nodal
Displacements

Treat Surface
Traction

Compute Rigid
Wall Forces

Treat Tied
Interfaces

Impose Nodal
Constraints

Impose Boundary
Conditions

Process Thick
Shell Elements

Process Discrete
Elements

Process Contact
Interfaces

Process 1D
Slidelines

Process Shell
Elements

Process Beam
Elements

Process Solid
Elements

Impose Body
Forces

Impose
Concentrated Loads

www.manaraa.com

60

4. CONTACT ALGORITHM IMPLEMENTATION

Approximately half of all the problems associated with numerical simulations of

crashworthiness analysis are caused by contact search. The main problems in current

contact algorithms originate in the node-to-segment nature of the model definition and in

the search algorithms that define which nodes are in contact with which segments. In

particular, treating node-to-segment conditions only leads to a systematic failure of

detecting edge-to-edge or edge-to-segment penetrations. Early search algorithms detected

a nearest master node for each slave node and selected a single nearest master segment

from all segments connected to the nearest master node. This is an algorithm that works

very well for the simulation of the contact of two smooth convex surfaces, but fails in

many situations that occur in the high curvature failure modes such as in automotive

structures. In particular, multiple impacts may occur simultaneously, and high curvatures

and irregularity in the meshes may easily lead to the detection of a wrong neighbor

segment, allowing numerous penetrations to remain undetected.

Most of the recent research on contact algorithms is aimed at improving the

efficiency (making them faster in terms of computation). Hence there is a need for a

contact algorithm which is more accurate in detecting penetrations and applying forces

than the existing ones. In this chapter, new global and local search techniques along with

an improved force-calculation method are introduced. The algorithms that are modified

www.manaraa.com

61

and algorithms that are added to implement new contact algorithm in DYNA3D are

presented.

4.1 Contact algorithm considerations

To improve the contact search accuracy in DYNA3D, a new contact algorithm

based on penalty formulation is added to the code. In implementing the contact algorithm

several considerations were taken into account to ensure its generality and practicality.

The main considerations are:

• The algorithm should provide accurate results. Even though importance was not

given to the efficiency, the algorithm should not take unrealistic computational

time. DYNA3D is an explicit finite element code and therefore the computation

time is directly related to the time step size. The element size is predominant

contributor to the time step size. Consequently, the contact algorithm should not

do drastic modification to the size and shape of elements.

• The new contact algorithm should be implemented without restricting or limiting

the original capabilities of the code. The DYNA3D code is a general-purpose

finite element code. It has several features such as, different constraints, different

connection options, different loading options, different material models and

different type of element formulations. The new contact algorithm should not

hinder functionality of any of the other features in the code.

• The contact algorithm should find penetration between all types of elements and

apply appropriate penalty force to remove the penetration. The penalty force

should take into consideration the types of elements, material properties of the

www.manaraa.com

62

elements and of course the magnitude of penetration. The new contact algorithm

should be able to distinguish different types of elements; modify the search

accordingly and compute the right amount of force.

• The contact algorithm should be formulated such a way that future improvements

and new approaches can be easily added without major modifications. Since

computation speed is constantly increasing and becoming less expensive, new

ways to improve the accuracy of finite element analysis is constantly being found

and codes are updated. The new contact algorithm should be structured such a

way that if necessary these changes are easily incorporated.

4.2 Contact algorithm limitations

Implementing a new contact algorithm in DYNA3D that would incorporate all the

features for all element types and material models involve significant amount of work

and time. Hence some limitations are put on this contact algorithm to make the task

achievable in reasonable amount of time. These limitations are only attributed to lack of

time, not feasibility.

• The new contact algorithm considers only shell and beam elements. Segments of

solid elements are not considered in the contact. Little modifications are necessary

to make the new contact algorithm consider the segments with negligible or zero

thickness such as segments of solid elements.

• The new contact algorithm development is limited to elasto-plastic material

models. As rigid material model has infinite stiffness, material stiffness method

cannot be used to calculate the contact penalty force. In order to determine

www.manaraa.com

63

penalty forces, the contact algorithms should be able to accept force vs. deflection

curve as input. This feature is currently not available in the new algorithm and can

be easily added later.

• The new contact algorithm assumes frictionless condition and does not compute

frictional forces. With some additional effort, frictional forces using different

friction models can be implemented and computed in the algorithm.

• The new contact algorithm assumes that there is no initial penetration at the

beginning of simulation. In case of initial penetration, a large force will be applied

to remove the penetration and this might lead to inaccurate results.

New Contact Algorithm

The proposed new algorithm, similar to other contact algorithms, is divided into three

phases: global-search, local-search and penalty-calculation phases. Each of the phases is

explained in detail in the following sections.

4.3 Global search (sphere­bucket­sort algorithm)

Sphere-bucket-sort uses the concepts of spherical-sorting and bucket sorting

techniques. This algorithm uses advantages of both techniques while abridging their

drawbacks.

In spherical-sorting algorithm, each and every element in the contact interface is

superscribed in separate imaginary spheres of the smallest possible radius. Then every

pair of spheres from the two contact surfaces is checked for intersection. Intersection

www.manaraa.com

64

check is a simple process of finding distance between the centers of spheres and

comparing it with sum of the two radii of the pair. Non-intersecting pairs are discarded

and intersecting pairs are checked for local contact.

In the bucket-sorting algorithm, the reference space is divided into “buckets” and

every node in the contact is assigned to one of the bucket. The shape of the buckets

depends on the number of dimensions of the problem. In one-dimensional problem, shape

of the buckets is column of spaces; in two-dimensional problem it is a square or a

rectangle; and in three-dimensional problem, it is a cube or a cuboid. The number of

buckets depends on the element size as well as the size of the model. Once each node is

assigned to a bucket, the local search process begins. In the local search, each slave node

is associated with a nearest master node. The nearest master node is selected from the

nodes in the bucket containing the slave node or the immediate neighboring buckets. The

nearest master segment is then selected from the group of segments that contain the

nearest master node.

Sphere-bucket-sort algorithm takes the following advantages from bucket-sort and

spherical-sort algorithms.

1. Bucket-sorting eliminates local-search between the elements which are more than

one bucket length away from the slave node.

2. Bucket-sorting is done once every 10 to 15 cycles to minimize the computation

time.

www.manaraa.com

65

3. Spherical-sorting encloses every element inside an imaginary sphere to find

intersecting pair. By enclosing each element inside a sphere, every possible

combination of intersecting pairs is found and local search is done.

4. Spherical-sorting uses distance check to eliminate the non-intersecting pair of

elements which is a simple and fast procedure.

Sphere-bucket-sort algorithm eliminates the drawbacks of bucket-sort and spherical-sort

algorithms:

1. Bucket-sort updates the nearest master node by checking only the nodes which are

connected to the element from the previous nearest master segment. This will fail

to identify the correct master node when the elements are distorted severely

compared to the initial configuration.

2. Spherical-sort algorithm checks distance between every pair of elements at every

cycle and this will substantially increase the computation time if the number of

elements in contact is large.

The proposed new global search, sphere-bucket-sort algorithm, instead of

circumscribing each element in a sphere similar to spherical-sorting, it creates an

imaginary sphere around each slave node with the center of sphere being the slave node

itself. The radius of each sphere around the node is just big enough to circumscribe all the

elements that are attached to that particular node. Centroid calculation of the elements is

eliminated since the nodes are the centers of the spheres.

For a node which is connected to just beam elements, the radius of the sphere

enclosing it will be the length of the longest element it is attached to. The radius of the

www.manaraa.com

66

sphere enclosing a node that is connected to only triangular elements is equal to the

longest of the edges that the node is sharing. In case of a node connected to quadrilateral

elements, the radius of the sphere is the longest of all the edges and diagonals that it is

connected to. Figure 4-1 shows the concept of spheres enclosing nodes.

Figure 4-1 Concept of spheres enclosing nodes

Once all the slave nodes are enclosed inside the imaginary spheres, penetrating

pairs of spheres are identified. This is done by computing distance between the centers of

a pair of spheres and comparing it with the sum of their radii. A comprehensive global

search simply takes each sphere and checks to see if it penetrates any other sphere

enclosing other node. This will be an exhaustive search and the cost of search goes up

with the number of slave nodes. Hence a neighborhood search (bucket-sort) is done after

enclosing nodes inside imaginary spheres.

The bucket-sort is an algorithm that generates a reasonable neighborhood

definition. The idea behind the bucket sort is to perform some grouping of the spheres so

that the sort operation needs only to calculate the distance of the spheres in the nearest

groups. Bucket-sort eliminates most of the non-intersecting spheres without having to

find distance between them.

www.manaraa.com

67

The bucket-sort is a simple process of sorting. Like most sorting algorithms, it

sorts in one dimension; and to sort across two or three dimensions, one-dimensional sorts

are performed in nested loops. The number of buckets depends on the size of the

elements as well as the extent of contact surface. It is determined by finding the

maximum and minimum coordinates of the nodes in each direction and their difference is

then divided by characteristic length. The characteristic length is calculated by taking a

fraction of the longest segment diagonal in the surface definition. The number of buckets

in the x, y, and z coordinate directions are given by

LMAX
xxNX minmax −

= (4.1)

LMAX
yyNY minmax −

= (4.2)

LMAX
zzNZ minmax −

= (4.3)

where coordinates ()minmax , xx ()minmax , yy and ()minmax , zz define the extent of the contact

surface and are updated each time the bucket searching is performed, and LMAX is the

longest characteristic length.

The bucket pointers in x, y, and z directions, of a node whose coordinates are x, y and z,

are given by

()
() 1

minmax

min +
−

−
⋅=

xx
xxNXPX (4.4)

()
() 1

minmax

min +
−

−
⋅=

yy
yyNYPY (4.5)

www.manaraa.com

68

()
() 1

minmax

min +
−

−
⋅=

zz
zzNZPZ (4.6)

If it were to store bucket pointers in each direction for all the nodes, then memory

requirement would be very large. To reduce the memory requirements, sorting is nested

in each direction and three pointers are collapsed into a single index. This single-index

bucket-number is given by

() () NYNXPZNXPYPXNB ⋅⋅−+⋅−+= 11 (4.7)

Figure 4-2 shows bucket pointers and single-index bucket-number.

Figure 4-2 Bucket pointers and single-index bucket numbers

Once the contact surface is divided into buckets, every sphere is checked for all

the buckets it intersects with. Each sphere could be a part of one, few or all the buckets.

This is done using the following bucket finding algorithm.

• Loop over all the nodes

x

y
z

11

1

2

3

2
3

4
1

2
3

4 5
6

7

8 9
10

11
12

www.manaraa.com

69

• Find maximum and minimum dimension of the sphere in each direction using

radius and center of the sphere.

• In each direction, find maximum and minimum bucket-pointer that sphere will

intersect viz., bkx1, bkx2, bky1, bky2, bkz1 and bkz2

• Calculate bucket number using

Bucket-number = () () NZNYkNXji **1*1 −+−+

• Update the bucket-number list with the node number.

Once every bucket has been updated by nodes which it intersects, every sphere in

the bucket is checked for intersection with other spheres in the same bucket. Non-

intersecting pairs are disregarded and intersecting spheres are saved for local search.

4.4 Sorting frequency

If sphere-bucket-sort is to be done every time step, the cost of computation

increases significantly. In explicit finite element analysis, there is no need for sorting

every time step as the critical time step is very small and the incremental displacements

over a time step are very small relative to the mesh dimensions. In typical explicit finite

element crash analysis the element size is approximately 5 to 7 mm and critical time-step

is approximately one microsecond. At this element size and time-step, elements moving

at 35 mph will displace about 0.0156 mm in one cycle (time-step). At this rate, it takes

about 320 to 625 cycles for two elements which do not intersect in one sort to penetrate

in next sort. At present, to be on safer side, sorting is done every 100 cycles. If the

contact is used in high-speed impact simulation, the sorting frequency should be

increased.

www.manaraa.com

70

4.5 Local Search

When the sorting frequency is reduced, the cost of local search dominates the

contact search cost. The local search presented here doesn’t distinguish between different

shell elements. A 4-node quadrilateral element is treated as two 3-node triangular

elements. This section briefly explains the algorithm used in the local search. The local

search is divided into two parts: beam-to-beam penetration check and beam-to-triangle

penetration check. Assumptions and computations involved in both parts are explained.

The local search is performed only if two spheres S1 and S2 around nodes n1 and

n2, as shown in Figure 4-3, are identified as intersecting pairs by the global sphere-

bucket-sort. In this case, all elements connected to node n1 are checked against all the

elements connected to node n2. Each element is treated once as slave and once as master

while checking against another element. From this treatment, the solution is identical at

all times.

Figure 4-3 An example of intersecting pair

n1
n2

S1 S2

www.manaraa.com

71

4.5.1 Beam­to­beam penetration check

While checking for penetration between two elements E1 and E2, the edges of

both elements are checked against one another. The edges are treated as beams of circular

cross section and radius equal to the thickness of the corresponding element. Each corner

is treated as a sphere of radius equal to the thickness of the element. The final shape of

the beam as seen during local search is as shown in Figure 4-4.

Figure 4-4 Geometric surface of a beam seen by contact algorithm

The beam-to-beam penetration check is done by calculating the shortest distance

between two beams and comparing it with the sum of their radii. If the shortest distance

between the two is less than the sum of the radii, then magnitude of penetration is given

by the taking the difference of sum of radii and shortest distance.

Figure 4-5 shows notations used in a beam-to-beam check. The first step is to find

if the beams are parallel to each other. Let u be the vector from node 1 to node 2, v from

node 3 to node 4, and w from node 1 to node 3.

Figure 4-5 Notations used in beam-to-beam check algorithm

1

2

3

4

www.manaraa.com

72

The two beams are said to be parallel if the following condition is satisfied:

02 ≤− BAC (4.8)

where

uuA ⋅= , vuB ⋅= and vvC ⋅= .

If the lines are found to be parallel, the perpendicular distance between two infinite lines

along u and v is calculated using

() 13 NvTNPdist −+= (4.9)

where N3 is position of node 3, 1N is position of node 1 and
vu
wuT

⋅
⋅

= .

If Pdist is greater than the sum of the radii of the two beams, then these beams do

not intersect. If it is less, then further checks are done to see if any portions of these

beams overlap. If they overlap, more calculations are done to find out how much of the

beams overlap and midpoints of their overlap. These midpoints of overlap are the points

where forces are applied.

If the beams are found to be not parallel, the point of intersection of two infinite

lines along vectors u and v are found. This point of intersection can be on one of the

beams, on both the beams, or on neither of the beams. Depending on the point of

intersection and position of the beams, the shortest distance is calculated using different

approaches. A few of the various possibilities of beams coming into contact are shown in

Figure 4-6.

www.manaraa.com

73

Figure 4-6 Various configurations of beams’ contact

4.5.2 Beam­to­triangle penetration check

The shape of the triangular element is represented by a combination of a

triangular prism, three cylinders whose axes are edges of element, and spheres whose

centers are the corners of the element. The coordinates of the three nodes and thickness

are used to create the prism. This triangular prism is checked with the cylinder shaped

beam.

First, the cylinder is extended infinitely in both the directions of the beam to

check if it intersects the plane of triangle. If the beam doesn’t intersect the plane, then

the beam is parallel to the plane of triangle. In this case, distance between the plane of

triangle and axis of beam is calculated. If the distance is more than half of sum of

thickness of triangle and radius of cylinder, the beam does not intersect the triangle. If the

distance is less, further checks are done to see if any portion of beam overlaps the

triangle.

www.manaraa.com

74

If beam is not parallel to the plane of the triangle, the intersection point of infinite

long beam and plane of triangle is found. Figure 4-7 shows the notations used in beam-to-

triangle check.

Figure 4-7 Notations used in beam-to-triangle check

The point of intersection between beam and the plane of triangle is found by using

() ()000 PQfPsP −+= (4.10)

where
rn
wnf

⋅
⋅

−=

This point will be on the beam if 10 ≤≤ f .

The intersection point is checked if it is inside the boundary of the triangle.

() () ()
vtusV

VVtVVsVtsV

,

0

02010

++=

−+−+=
 (4.11)

where s and t are given by

v0 v1

v2

P0

Q0

P(s)

www.manaraa.com

75

()
()
()
()unv

unwt

vnu
vnws

×⋅
×⋅

=

×⋅
×⋅

=
 (4.12)

This point is in the triangle if s ≥ 0, t ≥ 0 and s + t ≤ 1

If the point of intersection is not in the triangle or on the beam, then there is no

penetration between the beam and the triangle. But if the intersection point is on the beam

and in the triangle, then proximities of this point with respect to all the nodes on the beam

and the triangle are found and forces are calculated and distributed.

The depth of penetration is given by taking the difference of ()
2

21 thkthk + and ()un ⋅ ,

where thk1 and thk2 are thickness of triangle and radius of beam respectively.

4.6 Penalty calculations

Once the depth of penetration and point of intersection are found by the local

search method, as explained in the previous section, a massless spring is introduced to

remove the penetration. The stiffness of the contact spring depends on the material

properties and type and size of the elements involved.

The interface stiffness K is determined using both the master and slave surfaces.

To ensure the stability of the solution, the stiffness is multiplied by a scaling factor which

can be varied depending on the problem type. The overall contact spring stiffness is

determined by having stiffness of both the surfaces in series as shown in Figure 4-8.

www.manaraa.com

76

Figure 4-8 Contact surface stiffness in series

The equation for overall contact spring stiffness is

21

21
0 KK

KKsK
+

= (4.13)

where s is the stiffness scaling factor. Generally a scale factor of unity or more is used

for high speed contact problems and a scale factor of less than unity for lower speed

contact problems.

K1= surface-1 stiffness

K2= surface-2 stiffness, and

K0 = overall contact stiffness.

If the contact element is a shell element, then surface stiffness for that element is given

by

 ()diagonalshell
AEK ii

i max
= (4.14)

where E = Modulus of elasticity

Ai= Segment area

www.manaraa.com

77

and if the contact element is a brick element, the stiffness is calculated by

i

ii
i V

ABK
2

= (4.15)

where Bi = Bulk modulus

Ai = Segment area

Vi = Element volume

The contact force on master surface is computed using

isc PnKF = (4.16)

where Fc is the total contact force, P is magnitude of penetration, ni is the normal to the

master segment and Ks is stiffness which given by

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
PGap

GapKKs 0 (4.17)

where Gap is smallest of the thicknesses of the two segments. The stiffness is nonlinear

and varies with the amount of penetration. It increases exponentially as the penetration

increases. Figure 4-9 shows the difference between forces using constant stiffness and

variable stiffness. Force using constant stiffness linearly increases as the depth of

penetration increases whereas force using variable stiffness increases exponentially. It

can be noted that both the forces are nearly identical when penetration is small, but for

any reason if penetration could not be removed, the variable stiffness method applies

significantly higher force compared to the constant stiffness method.

www.manaraa.com

78

Figure 4-9 Penetration-Force curve

Once the magnitude and direction of contact force on master surface is computed,

same magnitude of force is applied in opposite direction on the slave segment. Depending

on the location of the penetration point relative to the segment nodes, the forces are

distributed using shape functions.

Shape functions for a beam segment are given by

f
f
−1

 (4.18)

and shape functions for a triangular segment are given by

t
s

ts −−1
 (4.19)

www.manaraa.com

79

where f , s and t are as shown in Figure 4-10.

Figure 4-10 Shape functions while applying force

In summary, the new contact algorithm which includes a new global search method,

a new local search method and improved contact mechanics has the following

advantages:

1. It identifies all possible contact element pairs accurately

2. It considers accurate geometry of the contact surfaces

3. Solves the issues with edge-to-edge and edge-to-surface contact checks

4. Applies exponentially increasing constraint forces so that penetrations are

removed at all times.

4.7 New contact algorithm implementation

The new contact algorithm has been implemented in the DYNA3D finite element

program. It consists of three stages: global search, local search, and force (penalty)

calculation. Algorithms for these stages are developed and implemented. The algorithm

is developed for one-dimensional beam elements with constant circular cross-section and

two-dimensional shell elements with constant thickness. Extending this algorithm to treat

s

v0

v2

v1
t

P0 Q0

f

www.manaraa.com

80

solid elements involves additional steps of transforming surfaces of solid elements into

two-dimensional shell elements and performing contact search between those shell

elements.

The new algorithm is aimed at improving the accuracy of the current DYNA3D

contact algorithms. The current algorithms use bucket-sort and incremental-search for

global search which fails when the contact surface has high curvature or when the slave

nodes move at high speed. These algorithms work well for most of the general cases, but

when it involves significant sliding between the elements, the chances of failing to detect

the penetration increases. In the local search, the current algorithms use ‘avoiding

penetration of slave-nodes on master-surface’ approach. In this approach, a slave-node

has only one master-element at a given cycle and in the next cycle, the master-element

for this cycle will be the same element or one of the elements attached to it. This

approach fails when a node approaches two elements symmetrically. These drawbacks of

the current contact algorithms in DYNA3D are overcome in the new contact algorithm.

The new algorithm uses spherical-bucket-sort which considers all possible pairs of

slave-node—master-segment with a reasonable increase in computation time. For local

search, it uses beam v/s beam and beam v/s triangle approach instead of node v/s

segment. This approach eliminates undetected penetrations.

The implementation of the new contact algorithm in DYNA3D involved modifying

several subroutines and adding several other subroutines to the code. In this section, the

modifications made to the original code and the subroutines added to the code are

described.

www.manaraa.com

81

4.7.1 Modifications to the source code

The first modification to the DYNA3D code was to allocate extra memory space

during initialization process for storing the variables required during contact search. This

is a finite amount of memory space which depends on the number of slave nodes and the

smallest characteristic length in the model. For ease of implementation, this space is kept

separate from the other variables space in the code and made user defined. The user

needs to be careful while defining this space since allocating less than the minimum

required may result in error termination. Allocating a larger amount of space than

required is a good practice and it does not affect computational time required for the

simulation.

The next modification to the code was in the input phase subroutines. The input

format for the new subroutine was kept similar to the original ‘single-surface’ contact

input. Few subroutines were added to the input phase to read, store and sort the contact

segments and nodes. This information is stored in the extra memory space that is

allocated by the user.

Several other modifications were made to the DYNA3D to incorporate the new

contact algorithm. A total of 17 new subroutines were added and two existing

subroutines were modified.

4.7.2 Added subroutines

The subroutines that are modified and new ones that are added to the DYNA3D

code are listed in the Table 4-1. The subroutines uminit, umconnec, umsrtsn and

www.manaraa.com

82

umupdthk constitute addition to the initialization phase. The subroutines umchkbeam,

umfndbks, uminitbks, uminithk, umradii, umslmrlist constitute global search phase. The

subroutines umchkdist, umb2b, umb2t constitute local search; and the subroutines

umbforce and umtforce constitute force calculation phase. The flow chart of this contact

algorithm is shown in Figure 4-11. The initialization phase subroutines are executed once

in the beginning of the computation. The global search phase subroutines are executed

every 100 cycles. The local-search and force-calculation phase subroutines are executed

at every time increment cycle.

In the initialization phase, extra memory storage space is allocated for the contact

calculations. After DYNA3D reads the input file, slave nodes are extracted from the slave

segments definition and are sorted. The thicknesses of these nodes are extracted from the

corresponding elements and stored. The slave segments that connected to each of the

slave nodes are stored.

The global search phase is performed once every 100 cycles to minimize the

computation time. In this phase, the minimum volume that is orthogonal to the global

coordinate system and required to enclose the contact surfaces is computed by spanning

maximum and minimum value in each dimension. Using the minimum characteristic

length, this volume is then divided into a number of buckets and each bucket is given a

unique number. Imaginary spheres around each slave node are constructed with radii

computed based on the size of elements that the slave nodes are connected to. From the

intersections of all spheres and buckets, master-slave segment pairs are identified and

stored in the memory.

www.manaraa.com

83

In the local search phase, each master-slave segment pair is checked for

penetration. Depending on the type of element, combination of ‘beam-to-beam’ and

‘beam-to-triangle’ checks are performed and if a penetration is found, the necessary force

is applied, in the force-calculation phase, on the nodes to overcome penetration.

Once the new contact algorithm is implemented and validated, several problems

were simulated using both the new contact algorithm and the current contact algorithm in

DYNA3D to show the differences and improvements. The results and comparisons from

these simulations are presented in chapter 5.

www.manaraa.com

84

Table 4-1 New and modified subroutines

New Subroutines Description

umb2b checks penetration between two beams/cylinders

umb2t checks penetration between a beam and a triangle

umbforce calculates penalty forces on beams and updates force vector

umchkbeam checks if the given element is a beam or not

umchkdist checks if the elements of given nodes have possibility of

interpenetration

umconnec makes the list of all the slave segments connected to the given
node

umfndbks finds all the buckets to which the given node belongs

uminit initializes the extra memory storage

uminitbks initializes the buckets and bucket sizes

uminithk initializes radii of slave nodes

umlcsrch does local search between given two elements

umradii calculates and stores radii of slave nodes

umsl4 main contact subroutine

umslmrlist makes list of slave and master elements in the given bucket

umsrtsn sorts slave nodes

umtforce calculates penalty forces on triangle and beam, and updates

force vector

umupdthk update thickness of nodes

Modified Subroutines Description
dynai reads input and initializes variables

soltn computes solution phase

www.manaraa.com

85

Figure 4-11 Flow chart for the new contact algorithm

Initialize Extra Memory Storage

Extract Slave Nodes from Slave
elments

Update thickness of nodes

Extract connectivity of nodes

Find radius of sphere to be
enclosed around each node

Divide the contact surface into
equal size buckets

Find out all intersections of
buckets and spheres

List and sort ‘master-slave’
element pairs

For each ‘master-slave’ element
pair, do Beam-to-Beam and Beam-to-

Triangle checks

If penetration found, compute
forces on each node required to

remove penetration

Update global nodal force vector

Initialization Phase

Global Search Phase

Force-calculation

Local Search Phase

www.manaraa.com

86

5. VALIDATION OF NEW CONTACT ALGORITHM

A new contact algorithm that consists of new global and local search and

improved force-calculation methods is implemented in DYNA3D. To check validity and

to demonstrate the general behavior of the new contact algorithm, few element level and

component level examples are simulated and the results are presented in this chapter. The

element level examples focus on the cases where DYNA3D fails to detect contacts and

penetrations using the existing ‘single-surface’ and ‘nodes-to-surface’ contact interfaces.

The component level examples are: Hertz contact problem, contact patch test, impact

between two tubes of different mesh densities and crush of a symmetric tube between two

rigid walls. The Hertz contact problem was simulated to validate maximum stress

induced in the model. The contact patch test gives an indication of stability and stress

propagation during a contact impact. An impact between two tubes of different mesh

densities and symmetric tube crush were simulated to examine the compliance and to

demonstrate the self-contact search capability of the new contact algorithm.

5.1 Element level validation

The element level examples are simple problems in which an element contacts one

or two elements in different configurations. All elements were assigned elastic material

properties and the contact was assumed frictionless. All the examples were also

simulated using currently available contact algorithms in DYNA3D and the results were

compared with results from new contact algorithm.

www.manaraa.com

87

5.1.1 Example 1 (Nodes to surface)

In this example, a small plate was impacted on one end of a big plate. The small

plate was created using 9 equal size shell elements and the big plate using one shell

element. A thickness of 3 mm and elastic-plastic material property were assigned to both

plates. A contact was defined between the plates and the distance between the plates was

measured. Figure 5-1 shows the initial configuration and velocity vector.

Figure 5-1 Initial configuration and velocity vector of Example 1

Three different simulations were run using the same configuration. First – using

the original ‘single-surface’ contact in DYNA3D, second – using ‘nodes-to-surface’

contact in DYNA3D and third – using the (new contact algorithm) in DYNA3D. In each

case the distance between the plates was monitored and the results are shown in Figure

5-2.

In the first case, when using ‘single-surface’ contact, the contact fails to detect

penetration of few of the nodes. With this contact algorithm, in a pool of slave segments,

www.manaraa.com

88

when one slave segment is found penetrating a master segment, the same slave segment

is not checked with other master segment. This phenomenon can be observed in Figure

5-3 in which it can be seen that the contact algorithm prevents penetration of node ‘Nb’

but not node ‘Na’. When the slave segments were defined in a different order, a different

behavior was observed. The distance between node ‘Na’ and the large plate is

represented by curve ‘A’ in Figure 5-2.

Figure 5-2 Distance between two plates

Figure 5-3 Failure to detect penetration using single surface contact

In the second case, using the original ‘nodes-to-surface’ contact algorithm,

penetration of all slave nodes were detected by the master segment, but the thickness of

Na

Nb

www.manaraa.com

89

the segments were not taken into account. The distance between the plates decreases to

zero before it starts increasing. This is shown as curve ‘B’ in Figure 5-2.

In the third case, using the new contact algorithm, all penetrations are detected

and the true thickness of each segment was taken into consideration. Curve C in Figure

5-2 represents the distance between the small and large plates, and it can be seen that the

distance between the plates starts increasing after it reaches 3 mm.

5.1.2 Example 2 (Surface to surface)

In this example, two equal sized rectangular elements whose widths are smaller

than their lengths were placed in such a way that their lengths were perpendicular to each

other. Both elements are assigned elastic-plastic material property and a thickness of 3

mm. An initial velocity was assigned to the top element such that the face of top element

impacts the face of bottom element. Three cases were simulated using DYNA3D with

different contact algorithms. The configuration and velocity vector is shown in Figure

5-4.

Figure 5-4 Initial configuration and velocity vector of Example 2

www.manaraa.com

90

The first and second cases in which the original ‘single-surface’ and ‘nodes-to-

surface’ contact algorithms are used respectively fail to detect penetration. Since both

algorithms use the same concept; preventing nodes from penetrating the surface, and no

node is penetrating any surface in this example, the contacts fail. Curves ‘A’ and ‘B’ in

Figure 5-5 represents the distance between the two elements. It can be seen that the two

elements traverse each other without any resisting force.

Figure 5-5 Distance between the elements

The third case, in which the new contact algorithm was used, detects the

penetration at the defined thickness and applies appropriate forces on nodes to remove

the penetrations. Curve ‘C’ in Figure 5-5 shows the distance between the two elements

for the case of new algorithm. It can be seen that the distance between the elements

decreases to 3 mm and then increases. By comparing the curves ‘A’ and ‘C’, it can be

www.manaraa.com

91

noticed that the rate of increase of distance between the elements during the rebound

phase is equal to the approach speed. It can be inferred that the amount of force applied to

remove the penetration is accurate.

5.1.3 Example 3 (Edge to surface)

This example is similar to the example 2 except that the faces of elements are

perpendicular to each other. Both elements were assigned elastic-plastic material property

and a thickness of 3 mm. The problem configuration and initial velocity is shown in

Figure 5-6. Element 2 was given an initial velocity such that face of the element 2

impacts an edge of element 1.

Figure 5-6 Initial configuration and velocity vector of Example 3

Similar to examples 1 and 2, three cases were simulated using DYNA3D with

different contact algorithms. In each case the distance between elements was measured to

see the accuracy of contact algorithms. The results are shown in Figure 5-7. Curve ‘A’

and ‘B’ represent distance between the elements when using ‘single-surface’ and ‘nodes-

to-surface’ algorithms respectively. In these cases, the contacts do not detect elements

www.manaraa.com

92

crossing each other and apply no reaction forces. Element E1 penetrates element E2

without any resistance and the distance between them becomes negative.

The distance between the elements for the third case is represented by curve ‘C’

in Figure 5-7. In this case the new contact algorithm detects the penetration and applies

forces on nodes to remove the penetration. It is evident from comparing curves ‘A’, ‘B’

and ‘C’ that the forces applied in the third case is accurate as the rate of approach of

elements in case ‘A’ and ‘B’ are equal to the rate of departure in case of ‘C’.

Figure 5-7 Distance between the elements

5.1.4 Example 4 (Edge to edge)

In this example, two parts; one with two-rectangular elements forming a shape of

‘V’ and another with one-element in the shape of a rectangle, were made to impact each

other such that an edge from each part comes in contact. The problem configuration and

www.manaraa.com

93

velocity vector are shown in Figure 5-8. Both parts were assigned the elastic-plastic

material property and the elements were assigned a thickness of 2 mm. Three cases were

simulated using DYNA3D with three different contact algorithms. Similar to the previous

examples, the original ‘single-surface’, the original ‘nodes-to-surface’ and the new

contact algorithms were used.

Figure 5-8 Initial configuration and velocity vector of Example 4

Figure 5-9 shows the comparison of minimum distances between the edges in the

different cases. Curve ‘A’ gives the distance between the edges when the ‘single-surface’

contact was used. Curves ‘B’ and ‘C’ show the distances when the ‘nodes-to-surface’

contact algorithm was used (two cases with different master surface definitions were

simulated). Curve ‘D’ shows the distance when using the new contact algorithm.

www.manaraa.com

94

Figure 5-9 Distance between the contacting edges

It can be seen that in case 1 (curve ‘A’), the edge to edge contact was not detected

and the nodes penetrate without any contact force applied on them.

Simulation using nodes-to-surface contact algorithm was further divided into two

sub cases in which the master segments were defined differently. Curves ‘B’ and ‘C’ in

Figure 5-9 represent these sub-cases. Even though the distances between the edges were

the same in both the cases, the slave nodes’ behavior was completely different. Figure

5-10 shows two different behaviors of slave nodes with two different master segment

definitions. The contact detects the penetrations of slave nodes with master segment E1

but not E2. Depending on which element is defined as E1, the slave nodes move away

from the element E1. Slave nodes are checked for penetration through the first master

segment and if penetration is found forces are applied and no further checks are done

with the other master segment. In both cases, the normals of master segments were

www.manaraa.com

95

pointing towards slave nodes. The behavior of slave nodes depends on the order in which

master segments are defined.

Figure 5-10 Different behaviors of slave nodes in nodes-to- surface contact

Case 3, in which the new contact algorithm was used, the penetration is detected

at the right distance and applies appropriate reaction force. Curve ‘D’ in Figure 5-9

shows the distance between contacting edges during the simulation. It can be seen that

the distance decreases to 2 mm, which is thickness of both the parts, and then increases.

5.1.5 Example 5 (Multiple contacts)

Example 5 is similar to example 4 except that the rectangular element is set up such

that its contacting the ‘V’ shaped elements from inside. Schematic diagram of the

problem along with initial velocity vector is shown in Figure 5-11. Both parts were

assigned elastic-plastic material properties and a thickness of 2 mm. Three cases were

simulated using DYNA3D with the original ‘single-surface’ , the original ‘nodes-to-

surface’ and the new contact algorithms.

E1 E2 E1 E2

E3 E3

www.manaraa.com

96

Figure 5-11 Initial configuration and velocity of Example 5

In the first case, where ‘single-surface’ contact algorithm is used, the penetrations

are identified but not at right distances. Figure 5-12 shows the two different behaviors

when the order of slave segments is changed. The numbering represents the order in

which slave segments are defined.

Figure 5-12 Two different behaviors of slave nodes when using single-surface contact

Case 1a

Case 1b

E1 E2

E3

E1 E2

E3

www.manaraa.com

97

Contact forces are applied on the nodes when slave nodes from E3 are located at a

distance of 1.23 mm from E1. Then the nodes from E3 are pushed towards E2 till the

distance between E2 and E3 reaches zero. At this point, a large force is applied on the

nodes of E2 and E3. Depending on what order the slave segments are defined, the

behavior of the plates change. Figure 5-13 shows the distance between the edges of two

plates during the simulation. It can be seen that even though the thicknesses of the

elements are 2 mm, the distance between the edges becomes less than 2 mm.

In the second case, where the ‘nodes-to-surface’ contact algorithm is used, the

penetrations are identified but the distances at which the forces are applied are not

accurate. The element thicknesses are not taken into consideration while calculating

penetration. For this case, Figure 5-14 shows the distance between the edges.

Figure 5-13 Distance between edges when using single-surface contact

www.manaraa.com

98

Figure 5-14 Distance between edges when using nodes-to-surface contact

Figure 5-15 shows the distance between the edges during the simulation using

new contact algorithm. Element E3 comes in contact with elements E1 and E2

simultaneously and symmetric forces are applied on the nodes. Figure 5-16 shows the

geometry of the parts when they come in contact with each other. The dotted lines

represent the boundary of the elements. The smallest distance measured between the

edges is 2.828 mm.

www.manaraa.com

99

Figure 5-15 Distance between the edges when using new contact algorithm

Figure 5-16 Configuration when elements are in contact

5.2 Component level validation

In these examples, several capabilities of contact algorithm are validated: ability to

check contact and penetrations between different size of elements, ability to perform self-

2.828

E

E

E

www.manaraa.com

100

contact search, ability to apply right magnitude of force such that accurate stress is seen

in the elements, and. ability to apply constant stress along the contact surface, In all these

examples, contact is assumed frictionless.

5.2.1 Example 6 (Impact between two tubes)

In this example, the new contact algorithm is tested for its ability to search

penetration between different size meshes. The results from the simulation are compared

with the results from the DYNA3D’s single-surface contact algorithm. In this example,

two cylindrical tubes with their axes perpendicular to each other having an approach

velocity of 35 m/s were made to impact each other and their general behavior was

observed. Each tube was 150 mm long, 3 mm thick and has 100 mm diameter. Elastic-

plastic with failure material model was chosen for both tubes and tube 1 was more

coarsely meshed than tube 2. Tube 1 was given an initial velocity of 35m/s and a column

of nodes in tube 2 were constrained in all directions. The geometry and the initial

conditions of the tubes are shown in the Figure 5-17 and the finite element configuration

is shown in Figure 5-18.

The results from the finite element simulations are shown in Figure 5-19. It shows

comparison of effective von-mises stress between the single-surface contact algorithm

using DYNA3D and the new contact algorithm at different stages of simulation. It can be

seen that the deformed configurations from the two simulations are nearly identical.

Maximum stress in each case reached 43.1 N/mm2.

www.manaraa.com

101

Figure 5-17 Contact-impact between two tubes -- Geometry and initial conditions

Figure 5-18 Contact-impact between two tubes -- Undeformed FE model

35 m/s

Tube 1

Tube 2

www.manaraa.com

102

www.manaraa.com

103

Continued…

Figure 5-19 Contact-impact between two tubes -- Stress configuration

www.manaraa.com

104

5.2.2 Example 7 (Crushing symmetric tube between rigid walls)

In this example, the ability of the new contact algorithm to search penetration in a

self-contact scenario is tested. A square tube with grooves and notches on its length is

fixed at the bottom and crushed from the top using a rigid wall. Elements were assigned

elastic-plastic with failure material model and 3 mm thickness. Figure 5-20 shows the

initial configuration of the tube. Since the tube and loading conditions are axisymmetric,

a ‘quarter’ model would give the same results as that of complete model.

Figure 5-21 shows comparison of stress states between the original single-surface

contact algorithm and using the new contact algorithm at different stages of simulation. It

can be noted from these results that the new contact algorithm is capable of searching

self-contacts and provides accurate results.

Figure 5-20 Symmetric tube crush -- Initial configuration of full and quarter model

www.manaraa.com

105

www.manaraa.com

106

Continued…

Figure 5-21 Symmetric tube crush -- Stress configuration

www.manaraa.com

107

5.2.3 Example 8 (Hertz contact problem)

The theory behind Hertz contact problem is explained in chapter 2. To simulate

Hertz contact problem and validate the stresses computed by the code, a finite element

model of a half-cylinder pressed against a flat base was created as shown in Figure 5-22.

It is modeled as plane-stress problem with a thickness of 1 mm. Both parts, half-cylinder

and flat base, were assigned elastic material properties. The half-cylinder was assigned an

elastic modulus of the 3E5 MPa and a Poisson’s ratio of 0.3. The flat base was assigned

an elastic modulus of 1E5MPa and a Poisson’s ratio of 0.33. A total load of 10 kN was

distributed equally among the nodes on the top edge of cylinder. Nodes on the bottom

edge of the flat base were constrained in all directions. Figure 5-22 shows the model

setup and finite element mesh at beginning of the simulation.

The model was simulated using the current contact algorithms in DYNA3D and

using the new contact algorithm. The results from the simulations were compared with

theoretical values and are presented in the following section.

Figure 5-22 Finite element configuration of the Hertz contact problem

P

www.manaraa.com

108

Theoretical maximum compressive stress is given by

௖ߪ ݔܽܯ ൌ 0.798ට ௉
஽ா(5.1) כ

where P is the applied load per unit lengths, D is diameter of the cylinder and E*

is the equivalent elastic modulus which is given by

2

2
2

1

2
1

*

111
EEE
νν −

+
−

= (5.2)

Using the equations 5.1 and 5.2 and the assigned values, theoretical maximum

compressive stress obtained is 10367.3 N/mm2. This theoretical value is compared to the

simulation results check the validity of the contact algorithm.

5.2.3.1 Current Interfaces from DYNA3D

Hertz contact problem was simulated using DYNA3D’s currently available

contact algorithms. DYNA3D’s ‘single-surface’ and ‘nodes-to-surface’ contacts failed to

detect the penetration between the two parts. As no node is penetrating any surface, the

contact interfaces fail. They also fail to check edge-to-edge penetrations since the

elements are in the same plane. Figure 5-23 shows configuration and pressure distribution

after few cycles of the simulation. Element stress is zero throughout the model indicating

no contact force has been applied on any of the element.

www.manaraa.com

109

(a) FE configuration (b) Stress distribution

Figure 5-23 Using current contact interfaces

5.2.3.2 New contact algorithm using DYNA3D

Using the newly developed contact algorithm, the Hertz contact problem was

simulated with three different mesh configurations. The element size and number of

elements were varied in these configurations. In each case, maximum compressive stress

is measured at the contact point and compared with the theoretical value. Figure 5-24 to

5-26 show the stress distribution in the three configurations after simulation reaches

steady state. Table 5-1 shows the comparison and percentage error in calculating

maximum compressive stress.

Figure 5-24 Stress distribution in Hertz contact problem, configuration-1

www.manaraa.com

110

Figure 5-25 Stress distribution in Hertz contact problem, configuration-2

Figure 5-26 Stress distribution in Hertz contact problem, configuration-3

 From Table 5-1, it can be seen that the difference between maximum compressive

stress and the theoretical value decreases as the element size gets smaller. The difference

could be for the reason that the stresses are computed at the integration points which are

at the center of the elements, but the maximum stress will be at contact points. It can be

shown that solution converges to the exact or theoretical value by making the element

size infinitesimal. But due to the limitation on computation time, here in this research,

only the trend towards convergence is shown.

www.manaraa.com

111

Table 5-1 Stress comparison in different configurations of Hertz contact problem

Configuration Maximum compressive
stress (MPa)

Difference from
theoretical value

Theoretical 1036.73 --
Configuration-1 611.06 41.05 %
Configuration-2 636.82 38.56 %
Configuration-3 845.28 18.46 %

5.2.4 Example 9 (Contact patch test)

The contact patch test is used to assess stability and consistency of the contact

algorithm by simulating a simple problem. In this problem, two rectangular plates that

are on same plane are made to contact each other on their edges. Two edges of the bottom

plate and one edge of the top plate are constrained as shown in Figure 5-27. A uniformly

distributed varying load was applied on the top edge of the top plate. Keeping the total

applied load constant and varying the mesh densities, three different configurations of the

problem were simulated. Maximum stress and stress variation at the contact surface were

monitored to see whether the contact will induce fictitious localized stresses.

Figure 5-27 Simple contact patch test problem

P

www.manaraa.com

112

5.2.4.1 Current Interfaces from DYNA3D

Contact patch problem was simulated using DYNA3D’s currently available

contact interfaces. Similar to the case of Hertz contact simulation, in the contact patch

simulation, DYNA3D’s ‘single-surface’ and ‘nodes-to-surface’ contacts failed to detect

penetration. The elements traverse each other without contact force being applied on any

of the elements. Figure 5-28 shows the mesh configuration and pressure distribution after

few cycles. It can be seen from the stress distribution plot that the elements from bottom

plate do not experience any stress. Variation in stress in the top plate is due to varying

point load applied on the top edge.

(a) Mesh configuration (b) Stress distribution

Figure 5-28 Using current contact interfaces in DYNA3D

5.2.4.2 New contact algorithm using DYNA3D

Three different mesh configurations of the contact patch problem were simulated

using the new contact algorithm. For these configurations, the stress distribution along

the contact surface and displacements of nodes along the contact surface are measured.

www.manaraa.com

113

Figure 5-29 through 5-11 show stress distribution and displacement of nodes along the

contact surface.

From the figures it can be seen that a minimal variation of stresses along the

contact surface is observed in all configurations. The stress level at locations where the

nodes from the two plates vertically coincide are slightly but not significantly higher

compared to other locations. From the figures, the displacement of the nodes along the

contact surface is uniform. A uniform distance between the plates is maintained

throughout the simulation once the plates come in contact. Contact forces applied on the

nodes are accurate to maintain the correct distance between the two plates. Figure 5-35

shows the distance between the two plates at various locations for configuration-1, the

nodes being chosen randomly along the length.

Maximum stress seen in the elements varied with the mesh configuration. Table

5-2 shows maximum Von-Mises stress seen in different configurations of the model.

Table 5-2 Maximum Von-Mises Stress from three different configurations

 Configuration-1
N/mm2

Configuration-2
N/mm2

Configuration-3
N/mm2

Maximum V-M stress 103.74 121.36 231.61

www.manaraa.com

114

Figure 5-29 Stress (V-M) distribution in configuration-1 using new contact algorithm

Figure 5-30 Nodal displacements along contact surface, new contact algorithm,
cofiguration-1

www.manaraa.com

115

Figure 5-31 Stress (V-M) distribution in configuration-2 using new contact algorithm

Figure 5-32 Nodal displacements along contact surface, new contact algorithm,
configuration-2

www.manaraa.com

116

Figure 5-33 Stress (V-M) distribution in configuration-3 using new contact algorithm

Figure 5-34 Nodal displacements along contact surface, new contact algorithm,
configuration-3

www.manaraa.com

117

Figure 5-35 Distance between two plates along the contact surface, configuration-1

5.3 Application problems

To show the improvements in the new contact algorithm over existing contact

algorithms in DYNA3D while solving real world problems, two examples are simulated

and the results are shown in this section. In the first example, an impact between a cable

guardrail and front fender of a C2500 pickup truck is simulated. Snap shots from this

simulation at various times are presented in Figure 5-36. In the second example, an

impact between a portable concrete barrier and bumper of a C2500 pickup truck is

simulated. Figure 5-37 shows the snap shots from the simulation of bumper and barrier

impact at various times. In Figures 5-36 and 5-37, results from the simulation using

current algorithm are shown in left column and results from the new contact algorithm

are presented in right column. In both the examples, it can be seen that the new contact

algorithm prevents the penetration and provides more accurate results than the current

algorithm.

www.manaraa.com

118

5.3.1 Example 1 (Impact between fender and cable guardrail)

Continued…

www.manaraa.com

119

Current contact algorithm New contact algorithm

Figure 5-36 Contact between front fender of C2500 and cable guardrail

www.manaraa.com

120

5.3.2 Example 2 (Impact between bumper and concrete barrier)

Continued…

www.manaraa.com

121

Current contact algorithm New contact algorithm

Figure 5-37 Contact between bumper of C2500 and portable concrete barrier

www.manaraa.com

122

6. CONCLUSIONS AND RECOMMENDATIONS

Approximately half of all the numerical problems that are encountered during a finite

element simulation are from contact interfaces. Depending on the complexity and number

of parts and elements in the model, about half of the computation time is spent on contact

interfaces. Hence, any error that surfaces due to contact interface algorithms prolongs

total analysis time.

Current contact algorithms that are used in explicit finite element codes have come a

long way in improving their accuracy and efficiency. The majority of the contact search

algorithms that are used in popular FEM crash codes use the concept of ‘preventing

slave-nodes from penetrating master-surface’. Using this concept contact algorithms

detect and remove most of the possible penetrations that occur, however there is still

room for improvement when it comes to edge-to-edge penetration check and contact

force computation. With the use of nodal base projection to offset the element thickness,

some of the edge-to-edge penetration problems have been overcome. To make the contact

algorithms more accurate in detecting penetrations than what they are today, there is a

need for new contact search algorithm. The new contact algorithm should be able to

detect penetrations at all times and apply just enough force to remove those penetrations.

In this research, a new contact algorithm that includes a new global search method

and a new local search method has been proposed. Emphasis is given to accuracy in

detecting penetrations at all times and applying the right magnitude and direction of force

www.manaraa.com

123

at correct locations. A new global search method which uses the concept of enclosing

spheres around nodes combined with bucket sorting has been proposed. Using this

method all possible combinations of ‘slave-master’ element pairs which are in contact or

might come in contact over the next few cycles are identified. The sphere enclosing each

node has a radius large enough to enclose all the elements that are connected to the node.

The bucket sorting used in the new global search checks for intersections of spheres with

the buckets rather than presence of nodes in the bucket that is used in current algorithms.

Unlike current algorithms which use slave-node—master-segment pair and allocates, in a

cycle, only one master segment for a slave node, the new algorithm use slave-master

element pair. From this treatment, if a node is penetrating two or more elements

simultaneously, every penetration is identified.

The proposed new local search method assumes uniform thickness across each

element. The geometric surface of the beam elements was considered to be combination

of a cylinder and two spheres whose radii are equal to the radius of the beam. The

geometric surface of shell elements has half-cylinders at the edges and spheres at the

corners whose diameters are equal to the thickness of the element. With this

consideration, the geometry of the contact surface is interpreted accurately and problems

associated in finding penetration in a skewed mesh are eliminated.

Constant stiffness that is used in computing contact force in current contact

algorithms is replaced by exponentially varying stiffness in the new contact algorithm.

When compared to the constant stiffness, the varying stiffness applies significantly higher

forces when the penetration becomes large. With this approach the nodes are prevented

from passing through the element in cases where the inertia or loads are high. By varying

www.manaraa.com

124

the stiffness, penetrations are strictly removed and accurate distance between contact

surfaces is maintained.

The new contact algorithm has been implemented in DYNA3D and validated. To

validate the algorithm, Hertz contact problem and contact patch test were used. In the

Hertz contact problem, three different mesh size configurations were simulated and the

results were compared to the theoretical value. It is shown that with the new contact

algorithm, the maximum stress in Hertz contact problem tends to converge towards exact

solution or theoretical value when the element size becomes smaller. In contact patch

test, a simple problem is simulated with three different mesh configurations and results

are compared with the results from DYNA3D. It is shown that the new contact algorithm

accurately computes and maintains the distance between contact surfaces with an

acceptable variation in the stress along the contact surface.

Shortcomings and Recommendations for Future Research

The validation tests and example problems show that the new contact algorithm

detects penetration at all times and applies the right magnitude of contact forces on the

nodes to remove the penetration. However, it has few exclusions and shortcomings that

need to be addressed before it can be used to solve general non-linear dynamic problems.

Solid elements and surfaces are not considered in the contact search. Even though it

is a simple task of including the free surfaces of solid elements, the algorithm should be

modified to consider zero thickness of the solid segments and also to treat their edges and

corners differently.

www.manaraa.com

125

The new algorithm does not delete failed elements that are in the contact. Provisions

should be made in the algorithm such that the users have an option of deleting the

elements from contact once they fail due to certain failure criteria.

Initial penetrations are not taken into consideration in the new contact algorithm. If

initial penetrations are present in the model at the beginning of the simulation, the

simulation will crash due to high contact forces. Care should be taken to remove all initial

penetrations before using the new contact algorithm.

Every quadrilateral element is treated as two triangular elements while checking for

penetrations. If an element is severely warped, as shown in Figure 6-1, the geometric

surface that is seen by the contact algorithm varies depending on what order the element

is split into triangles. A different three-node combination results in a different contact

surface which in turn results in different end results. Care should be taken to avoid

defining warped elements.

Figure 6-1 Severely warped element

The new contact algorithm considers only uniform circular cross-section for the

beam elements. Other cross-sections such as rectangular and varying cross-section should

be included to make the new contact algorithm more versatile.

1
4

3

2

www.manaraa.com

126

Lastly, in this research, little focus was on the make the algorithm more efficient. As

a result, the computation time required to simulate problems using new contact algorithm

is significantly higher than the time required using current algorithms. The efficiency of

the contact algorithm can be improved by optimizing the code. Future work should

include optimizing the new algorithm to make it work seamlessly with rest of the

DYNA3D code.

www.manaraa.com

127

REFERENCES

1. Whirley, Robert G and Egelmann, Bruce E. DYNA3D A Nonlinear, Explicit,

Three-Dimensional Finite Element Code For Solid and Structural Mechanics-

User Manual. s.l. : Lawrence Livermore National Laboratory, 1993. UCRL-MA-

107254 Rev. 1.

2. Lagrange Constraints for Transient Finite element Surface Contact. Carpenter,

N J, Taylor, R L and Katona, M G. 1991, International Journal for Numerical

Methods in Engineering, Vol. 32, pp. 103-128.

3. Three-dimensional penetration computation. Belytschko, T, Kennedy, J M and

Lin, J I. Lausanne, Switzerland : s.n., August 17-21, 1987, Transactions of the

9th International Conference on Structural Mechanics in Reactor Technology, pp.

83-88.

4. A single surface contact algorithm for the postbuckling analysis of shell

structures. Benson, D J and Hallquist, J O. 2, 1990, Computer Methods in

Applied Mechanics and Engineering, Vol. 78, pp. 141-163.

5. Hallquist, J O. LS-DYNA Theoritical Manual. s.l. : Livermore Software

Technology Corporation, 2005.

6. A simple algorithm for three-dimensional finite element analysis of contact

problems. Papadopoulos, P and Taylor, R L. 1993, Computers and Structures,

Vol. 46, pp. 1107-1118.

www.manaraa.com

128

7. A unified contact algorithm based on the territory concept. Zhong, Z H and

Nilsson, L. 1996, Computer Methods in Applied Mechanics and Engineering,

Vol. 130, pp. 1-16.

8. The position code algorithm for contact searching. Oldenburg, M and Nilsson,

L. 1994, International Journal for Numerical Methods in Engineering, Vol. 37,

pp. 359-386.

9. The vectorized pinball contact impact routine. Belytschko, T and Neal, M O.

Anaheim, CA : s.n., 1989, Transactions of the 10th International Conference on

Structural Mechanics in Reactor Technology, Vol. B, pp. 161-166.

10. Sliding interfaces with contact-impact in large-scale Lagrangian computations.

Hallquist, J O, Goudreau, G L and Benson, D J. 1985, Computer Methods in

Applied Mechanics and Engineering, Vol. 51, pp. 107-137.

11. Contact-impact by the pinball algorithm with penalty and Lagrangian methods.

Belytschko, T and Neal, M O. 1991, International Journal for Numerical

Methods in Engineering, Vol. 31, pp. 547-572.

12. Inside-Outside contact search algorithm for finite element analysis. Wang, S P

and Nakamachi, E. 1997, International Journal for Numerical Methods in

Engineering, Vol. 40, pp. 3665-3685.

13. FFS contact searching algorithm for dynamic finite element analysis. Wang, F,

Cheng, J and Yao, Z. 2001, International Journal for Numerical Methods in

Engineering, Vol. 40, pp. 655-672.

www.manaraa.com

129

14. NBS contact detection algorithm for bodies of similar size. Munjiza, A and

Andrews, K R F. 1998, International Journal for Numerical Methods in

Engineering, Vol. 43, pp. 131-149.

15. Using space filling curves for efficient contact searching. Diekmann, R, et al.

16th IMACS World Congress.

16. Efficient contact search for finite element analysis. Diekmann, R, et al. 2000,

European Congress on Computational Methods in Appied Sciences and

Engineering.

17. A Pinball method by direct localization of the impact area. Petkevicius, K,

Kulak, R and Marchertas, A. 2003, Transactions of the 17th International

Conference on Structural Mechanics in Reactor Technology, Vols. J04-1.

18. The splitting pinball method for contact-impact problems. Belytschko, T and

Yeh, L S. 3, 1993, Computer Methods in Applied Mechanics and Engineering,

Vol. 105, pp. 375-393.

19. A parallel finite element contact/impact algorithm for non-linear explicit transient

analysis: Part I -- The search algorithm and contact mechanics. Malone, J and

Johnson, N. 1994, International Journal for Numerical Methods in Engineering,

Vol. 37, pp. 559-590.

20. A Perturbed Lagrangian formulation for the finite element solution of contact

problems. Simo, J C, Wriggers, P and Taylor, R L. 1985, Computer Methods in

Applied Mechanics and Engineering, Vol. 50, pp. 163-180.

www.manaraa.com

130

21. Contact Modeling -- Forces. Adams, G G and Nosonovsky, M. 2000, Tribology

International, Vol. 33, pp. 431-442.

22. Timoshenko, S P and Goodier, J N. Theory of Elasticity. s.l. : McGraw-Hill Inc,

1970.

23. Uber die beruhurng fester elastischer korper (On the contact of elastic solids).

Hertz, H. 1882, J reine und angewandte Mathemacik, pp. 94-156.

24. Stability and patch test performance of contact discretization and a new solution

algorithm. El-Abbasi, N and Bathe, K-J. 2001, Computers and Structures, Vol.

79, pp. 1473-1486.

25. Mesh matching and contact patch test. Tan, D. s.l. : Springer-Verlag, 2001,

Computational Mechanics, pp. 135-152.

26. On a patch test for contact problems in two dimensions. Taylor, R L and

Papodopoulos, P. [ed.] P Wriggers and W Wanger. Berlin : Springer-Verlag,

1991, Computational Methods in Nonlinear Mechanics, pp. 690-702.

27. The patch test as a validation of a new finite element for the solution of

convection-diffusion equations. Sacco, R, Gatti, E and Gotusso, L. s.l. :

Computer Methods in Applied Mechanics and Engineering, 1995, Vol. 124, pp.

113-124.

28. Fortin, M and Glowinsky, R. Augmented Lagrangian Methods: Applications to

the Numerical Solution of Boundary-Value Problems. Amsterdam-New York :

North-Holland Publ. Co., 1983.

www.manaraa.com

131

29. Bathe, K-J. Finite Element Procedures. NJ : Prentice-Hall: Englewood Cliffs,

1996.

30. Belytschko, T, Liu, W K and Moran, B. Nonlinear Finite Elements for

Continua and Strucutres. s.l. : John Wiley & Sons, 2000.

