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Abstract of Dissertation 

 
Development And Validation Of New Algorithms To Improve Contact Detection 

And Robustness In Finite Element Simulations 
 

Approximately half of all numerical problems in crashworthiness analysis involve 

impact dynamics, and accurate contact algorithms are critical to capture the structures’ 

behavior. Conventional contact algorithms use the principle of preventing ‘slave’ nodes 

from penetrating ‘master’ segments. Only nodes are checked in these contact algorithms 

and the connectivity of the nodes (in the slave side) are not considered. Additionally, to 

achieve efficiency, the conventional contact algorithms use different methods to 

eliminate element pairs that would unlikely come in contact and simplify the geometry 

while searching for penetration between the contact pairs. These eliminations and 

simplifications, sometimes, cause inaccuracy in the results. 

In this research, a new contact algorithm has been developed and implemented in an 

explicit nonlinear large displacement finite element code (DYNA3D). A new global 

search method and a new local search method for contact search have been implemented 

in the algorithm. The new global search method uses the concept of enclosing spheres 

around nodes combined with bucket-sorting. Unlike in the current algorithms where 

bucket-sort checks for presence of nodes in the buckets, bucket-sort in the new global 

search check for intersections of enclosed spheres with the buckets. In the new local 

search method, effort is made to represent accurate geometry of the contact surface. The 

element surfaces are offset by their thickness and, edges and corners are represented 
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using beams of circular cross-section and spheres respectively. Using this configuration, 

problems associated in finding penetration in a skewed mesh are eliminated. 

Constant stiffness that is used in computing contact force in current contact 

algorithms is replaced by exponentially varying stiffness in the new contact algorithm. 

When compared to the constant stiffness, the varying stiffness applies significantly higher 

forces when the penetration becomes large.  

The new contact algorithm has been implemented in DYNA3D and validated. 

Element level and component level examples have been used to check accuracy of the 

contact algorithm. Using these examples, gap between the contact surfaces and stress 

variation along the contact surface are checked. Using the new contact algorithm, the gap 

distance was found to be accurate and stress variation was found to be minimal.  

The new contact algorithm has few limitations which need to be addressed before it 

can be used to solve general three dimensional problems. Provisions should be made to 

the contact algorithm to include segments from solid elements, and rectangular & varying 

cross-sectional beam elements in the contact and to delete failed elements from the 

contact. Care should be taken not to include severely warped elements and initially 

penetrated elements in the contact definition.  

 



www.manaraa.com

vi 
 

Table of Contents 

Acknowledgments ........................................................................................ iii 

Abstract of Dissertation .............................................................................. iv 

Table of Contents ......................................................................................... vi 

List of Figures .............................................................................................. ix 

List of Tables ............................................................................................... xii 

1.  INTRODUCTION .................................................................................. 1 

1.1  Background .......................................................................................................... 1 

1.2  FEM in Engineering Analysis .............................................................................. 2 

1.3  Problem ................................................................................................................ 4 

1.4  Contributions of this research .............................................................................. 6 

1.5  Research overview ............................................................................................... 6 

2.  LITERATURE REVIEW ...................................................................... 8 

2.1  Review of contact algorithms ............................................................................... 8 

2.1.1  Global Search Algorithms ........................................................................... 10 

2.1.2  Local Search Algorithms ............................................................................ 18 

2.1.3  Contact Mechanics ...................................................................................... 32 

2.2  Need for a new contact algorithm ...................................................................... 35 

2.3  Contact Validation Tests .................................................................................... 38 



www.manaraa.com

vii 
 

2.3.1  Hertz Contact Test ...................................................................................... 38 

2.3.2  Contact Patch Test ...................................................................................... 41 

3.  DYNA3D OVERVIEW ........................................................................ 43 

3.1  Explicit Finite Element Method ......................................................................... 44 

3.1.1  Principle of virtual work ............................................................................. 44 

3.1.2  Time discretization ...................................................................................... 49 

3.2  Time Step Criteria .............................................................................................. 50 

3.3  Contact Interface Equations ............................................................................... 51 

3.3.1  Impenetrability condition ............................................................................ 53 

3.3.2  Traction conditions ..................................................................................... 54 

3.4  DYNA3D Source Code ...................................................................................... 55 

4.  CONTACT ALGORITHM IMPLEMENTATION .......................... 60 

4.1  Contact algorithm considerations ....................................................................... 61 

4.2  Contact algorithm limitations ............................................................................. 62 

4.3  Global search (sphere-bucket-sort algorithm) .................................................... 63 

4.4  Sorting frequency ............................................................................................... 69 

4.5  Local Search ....................................................................................................... 70 

4.5.1  Beam-to-beam penetration check ............................................................... 71 

4.5.2  Beam-to-triangle penetration check ............................................................ 73 

4.6  Penalty calculations ............................................................................................ 75 



www.manaraa.com

viii 
 

4.7  New contact algorithm implementation ............................................................. 79 

4.7.1  Modifications to the source code ................................................................ 81 

4.7.2  Added subroutines ...................................................................................... 81 

5.  VALIDATION OF NEW CONTACT ALGORITHM ..................... 86 

5.1  Element level validation ..................................................................................... 86 

5.1.1  Example 1 (Nodes to surface) ..................................................................... 87 

5.1.2  Example 2 (Surface to surface) ................................................................... 89 

5.1.3  Example 3 (Edge to surface) ....................................................................... 91 

5.1.4  Example 4 (Edge to edge) ........................................................................... 92 

5.1.5  Example 5 (Multiple contacts) .................................................................... 95 

5.2  Component level validation ............................................................................... 99 

5.2.1  Example 6 (Impact between two tubes) .................................................... 100 

5.2.2  Example 7 (Crushing symmetric tube between rigid walls) ..................... 104 

5.2.3  Example 8 (Hertz contact problem) .......................................................... 107 

5.2.4  Example 9 (Contact patch test) ................................................................. 111 

5.3  Application problems ....................................................................................... 117 

5.3.1  Example 1 (Impact between fender and cable guardrail) ......................... 118 

5.3.2  Example 2 (Impact between bumper and concrete barrier) ...................... 120 

6.  CONCLUSIONS AND RECOMMENDATIONS ........................... 122 

REFERENCES .......................................................................................... 127 



www.manaraa.com

ix 
 

List of Figures 

Figure 2‐1 One‐, two‐ and three‐dimensional bucket sorting ................................................................ 11 

Figure 2‐2 Non‐intersecting and intersecting pair ................................................................................. 13 

Figure 2‐3 Contact territories of a node, an edge and a segment........................................................... 14 

Figure 2‐4 Contact‐ and segment‐territory of a segment ....................................................................... 16 

Figure 2‐5 Determination of nearest master node ................................................................................ 19 

Figure 2‐6 Projection of slave node on to nearest master segment ....................................................... 20 

Figure 2‐7 Incorrectly identifying nearest master node in a severely deformed mesh ............................ 22 

Figure 2‐8 Undetected penetration ...................................................................................................... 22 

Figure 2‐9 Elements embedded in pinballs ........................................................................................... 23 

Figure 2‐10 Surface mesh normal of node I........................................................................................... 25 

Figure 2‐11 Inside‐Outside check on a 4‐node segment ........................................................................ 26 

Figure 2‐12 Parametric surface patch and surface patch ....................................................................... 27 

Figure 2‐13 Pinball hierarchy of 4‐node shell element .......................................................................... 30 

Figure 2‐14 Detection of penetration using pinballs.............................................................................. 30 

Figure 2‐15 Different splittings of quadrilateral element ...................................................................... 31 

Figure 2‐16 Surface‐to‐surface and edge‐to‐surface failure ................................................................... 36 

Figure 2‐17 Ambiguous situation during nodes‐to‐surface contact ........................................................ 37 

Figure 2‐18 Multiple contacts ............................................................................................................... 37 

Figure 2‐19 Hertz contact of two nonconforming elastic bodies ............................................................ 39 

Figure 2‐20 Sphere on a flat plate and sphere in a spherical cup ........................................................... 40 

Figure 2‐21 Simple contact patch test problem ..................................................................................... 42 

Figure 3‐1 A general three‐dimensional body ....................................................................................... 44 

Figure 3‐2 Notations of two bodies in contact ...................................................................................... 51 

Figure 3‐3 Simplified flow chart for DYNA3D ........................................................................................ 58 

Figure 3‐4 Flow chart for solution phase in DYNA3D ............................................................................. 59 



www.manaraa.com

x 
 

Figure 4‐1 Concept of spheres enclosing nodes ..................................................................................... 66 

Figure 4‐2 Bucket pointers and single‐index bucket numbers ............................................................... 68 

Figure 4‐3 An example of intersecting pair ........................................................................................... 70 

Figure 4‐4 Geometric surface of a beam seen by contact algorithm ...................................................... 71 

Figure 4‐5 Notations used in beam‐to‐beam check algorithm ............................................................... 71 

Figure 4‐6 Various configurations of beams’ contact ............................................................................ 73 

Figure 4‐7 Notations used in beam‐to‐triangle check ............................................................................ 74 

Figure 4‐8 Penetration‐Force curve ...................................................................................................... 78 

Figure 4‐9 Shape functions while applying force ................................................................................... 79 

Figure 4‐10 Flow chart for the new contact algorithm .......................................................................... 85 

Figure 5‐1 Initial configuration and velocity vector of Example 1 .......................................................... 87 

Figure 5‐2 Distance between two plates ............................................................................................... 88 

Figure 5‐3 Failure to detect penetration using single surface contact .................................................... 88 

Figure 5‐4 Initial configuration and velocity vector of Example 2 .......................................................... 89 

Figure 5‐5 Distance between the elements ........................................................................................... 90 

Figure 5‐6 Initial configuration and velocity vector of Example 3 .......................................................... 91 

Figure 5‐7 Distance between the elements ........................................................................................... 92 

Figure 5‐8 Initial configuration and velocity vector of Example 4 .......................................................... 93 

Figure 5‐9 Distance between the contacting edges ............................................................................... 94 

Figure 5‐10 Different behaviors of slave nodes in nodes‐to‐ surface contact ......................................... 95 

Figure 5‐11 Initial configuration and velocity of Example 5 ................................................................... 96 

Figure 5‐12 Two different behaviors of slave nodes when using single‐surface contact ......................... 96 

Figure 5‐13 Distance between edges when using single‐surface contact ............................................... 97 

Figure 5‐14 Distance between edges when using nodes‐to‐surface contact .......................................... 98 

Figure 5‐15 Distance between the edges when using new contact algorithm ........................................ 99 

Figure 5‐16 Configuration when elements are in contact ...................................................................... 99 

Figure 5‐17 Contact‐impact between two tubes ‐‐ Geometry and initial conditions ............................. 101 



www.manaraa.com

xi 
 

Figure 5‐18 Contact‐impact between two tubes ‐‐ Undeformed FE model ........................................... 101 

Figure 5‐19 Contact‐impact between two tubes ‐‐ Stress configuration ............................................... 103 

Figure 5‐20 Symmetric tube crush ‐‐ Initial configuration of full and quarter model ............................ 104 

Figure 5‐21 Symmetric tube crush ‐‐ Stress configuration ................................................................... 106 

Figure 5‐22 Finite element configuration of the Hertz contact problem .............................................. 107 

Figure 5‐23 Configuration (a), stress distribution (b) using current contact interfaces ......................... 109 

Figure 5‐24 In‐plane stress distribution using new contact algorithm .................................................. 109 

Figure 5‐25 Simple contact patch test problem ................................................................................... 111 

Figure 5‐26 Mesh configuration (a) and stress distribution (b) using DYNA3D ..................................... 112 

Figure 5‐27 Stress (V‐M) distribution in configuration‐1 using new contact algorithm ......................... 114 

Figure 5‐28 Nodal displacements along contact surface, new contact algorithm, cofiguration‐1 .......... 114 

Figure 5‐29 Stress (V‐M) distribution in configuration‐2 using new contact algorithm ......................... 115 

Figure 5‐30 Nodal displacements along contact surface, new contact algorithm, configuration‐2 ........ 115 

Figure 5‐31 Stress (V‐M) distribution in configuration‐3 using new contact algorithm ......................... 116 

Figure 5‐32 Nodal displacements along contact surface, new contact algorithm, configuration‐3 ........ 116 

Figure 5‐33 Distance between two plates along the contact surface, configuration‐1 .......................... 117 

 



www.manaraa.com

xii 
 

List of Tables 

Table 4‐1 New and modified subroutines ............................................................................................. 84 

Table 5‐1 Comparison of Hertz contact problem values between different codes................................ 111 

Table 5‐2 Maximum Von‐Mises Stress from three different configurations ......................................... 113 



www.manaraa.com

1 
 

 

1. INTRODUCTION 

 

1.1 Background 

Automobile crashworthiness and highway safety have been receiving significant 

attention in the past several years. The term ‘crashworthiness’ is understood to denote the 

ability of a vehicle structure and any of its components to deform plastically and yet 

maintain a sufficient survival space and thus protect the occupants in survivable crashes. 

Not only good design of automobiles, but also better design of highway and roadside 

hardware are required. Roadside hardware such as effective traffic barrier system, crash 

cushions, end terminals, break-away devices, truck-mounted attenuators and others must 

be used to achieve the highest levels of highway safety. 

Crashworthiness of a vehicle and performance of roadside hardware have been 

studied mainly by physical testing. However, physical testing along with analytical or 

numerical simulations are preferred since it is cost-effective and can obtain much more 

detailed information on the involved phenomena. Three types of analytical models are 

used to simulate vehicle structures – Lumped Parameter (LP) models, Finite Element 

(FE) models and hybrid models. Over the years, these models progressed from simple 

analytical model, tuned one or more parameters to fit a specific test, to a complex model 

with great geometric details and material properties. Even then, the most detailed models 

(LP or FE) developed to date are considered approximations of a highly complex non-

linear system that is often subject to large non-linear elastic-plastic deformations. Hence, 
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advances in understanding complex system performance such as crashworthiness can be 

achieved by increasingly including more details and making the analytical models 

represent as close as possible the physical components of the actual structures in 

geometry, material characteristics, connections, and contact interactions. 

It is important to note that numerical simulations are not aimed at lowering the 

normal workload of test laboratories. Testing will still be needed for the verification and 

certification of vehicle prototypes or safety systems for many years to come. The 

contribution of simulation lies in that it complements the testing by making the design 

and analysis process more efficient and cost effective. The strength of simulation lies in 

rapidly performing simulations in the form of parametric studies that allow quick 

elimination from prototyping those designs which have a high probability of not 

satisfying the testing criteria. The ideal process is one of a design, heavily supported by 

analysis, resulting in building of only those prototypes or systems that are almost certain 

to pass final verification testing. When a safety-related problem appears in a 

prototype/safety-system during a test, it is simulation that allows for diagnosis of the 

cause of the problem and selection of an appropriate structural modification in a minimal 

amount of time. Extensive use of numerical simulation has enabled the safety engineers 

and motor vehicle industry to make increasingly safer roads and automobiles in less time 

without a significant increase in testing costs. 

1.2 FEM in Engineering Analysis  

The finite element analysis (FEA) is firmly established as a powerful and popular 

analysis tool. It provides solutions to problems that would be difficult to solve by 

classical analytical methods. At present, it is applied to many different problems of 
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continua but is most widely used in engineering analysis of solids and structures. Testing 

of prototypes is increasingly replaced by simulation with nonlinear finite element 

analysis because this provides a more rapid and less expensive way to evaluate design 

concepts and design details. FEA uses numerical technique called finite element method 

(FEM).  

The object or system to be analyzed is represented by a geometrically similar 

model consisting of multiple, linked, simplified representations of discrete regions called 

“elements”. The elements are connected to one another at points called nodes or nodal 

points. Each node has various degrees of freedom (d.o.f) depending on the type of 

analysis and physical constraints applied on it. Equations of equilibrium, in conjunction 

with applicable physical constraints are applied to each element/node, and a system of 

simultaneous equations is constructed. These equations are solved to determine unknown 

values of d.o.f using appropriate numerical techniques. 

Analysis can be classified into linear analysis or nonlinear analysis depending on 

the problem. Nonlinearity in the problem can be due to material nonlinearity or geometric 

nonlinearity. Analysis can also be classified into static analysis or dynamic analysis 

depending on the loading conditions.  

Finite element analyses of vehicle crashworthiness and evaluations safety 

performance of systems are among the most challenging nonlinear problems in structural 

mechanics. The solution obtained from a finite element simulation is an approximation of 

the exact solution. A finite element simulation can be seen as a chain with two objects. 

The first link is the numerical model, essentially a complicated spring-mass system 
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whose dynamic behavior is an approximation of the continuum that is to be modeled. The 

second link is the software or the numerical algorithm that has to perform a numerical 

time integration of ordinary differential equations that govern the behavior of the model. 

1.3 Problem 

Approximately half of all numerical problems in crashworthiness analyses involve 

impact dynamics and accurate contact algorithms are critical to capture the structures’ 

behavior. Conventional contact algorithms use the principle of preventing ‘slave’ nodes 

from penetrating ‘master’ segments. In other words, a well-defined set of nodes is not 

allowed to penetrate an equally well-defined set of segments. If the nodes and segments 

are on different surfaces, a master-slave contact definition is used. If they are on the same 

surface, a single surface contact definition, where each node of the surface is not allowed 

to penetrate any segment on the same surface that is not connected to that node, is used. 

Only nodes are checked in conventional contact algorithms and the connectivity of the 

nodes (in the slave side) are not considered in the contact algorithm.  

Edge-to-edge penetration was not a significant problem in early simulations 

because contacts between convex surfaces with low curvature were considered and 

consequently node-to-segment contact algorithms have ability to detect all the occurring 

penetrations.  This is no longer the case for certain structures such as automotive 

structures. These structures have complex surfaces with high curvatures resulting in 

surfaces with several kinks and edges. In these situations, preventing the nodes from 

penetrating the segments is not sufficient to keep the surfaces from penetrating each 

other.  Edge-to-edge penetrations can occur and go undetected causing nodes to move to 

the opposite side of the segments.  Further movements of the penetrated nodes often lead 
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to high contact forces and consequently unrealistic response of the structure. Figure 1-1 

shows some of the problems with conventional contact algorithms. 

 

 

Figure 1-1 Problems with conventional contact algorithms 

 

Additionally, to achieve efficiency, current contact algorithms simplify the 

geometry while searching for contact pairs and eliminate element pairs from local search 

that would unlikely come in contact. Depending on the elimination process used by the 

contact algorithms, sometimes element pairs that would come in contact are eliminated. 

The simplification of geometry and elimination of contact element pairs cause inaccurate 

results. 

Hence to make numerical algorithms much more robust, it is necessary to have an 

accurate contact algorithm which (i) identifies all contact possibilities, (ii) accurately 

checks for contact and penetration between the segments (surface to edge as well as edge 

to edge) at all times and (iii) eliminates numerical instability due to high contact forces. 

Although much has been done in the development of contact algorithms, there is 

still scope for improvement regarding both the efficiency and the reliability of the 

algorithms. An ideal contact algorithm is one which is as accurate as the brute search 

Master surface Slave node 
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method (brute search method is one in which every node/element is checked for 

penetration against every other element in every cycle) with a reasonable amount of 

computation time.  

1.4 Contributions of this research 

The objective of this study is to develop a contact algorithm that addresses some 

the deficiencies mentioned above.  The algorithm is implemented by adding several 

FORTRAN subroutines in the general finite element code DYNA3D (Whirley, 1993). 

New methods for global search and local search that resolve the contact issues are 

developed. In the new global search method, efforts are made to identify every element 

pair that could come in contact. In the new local search method, accurate representation 

of geometry is considered while searching for penetration.  In this research, only 1-

dimensional beam elements and 2-dimensional shell elements are considered in the 

contact.  The algorithm is however coded in such a way that the 3-dimensional solid 

elements can be easily included in the contact. Additionally, in this research, more focus 

is given to the accuracy of the algorithm than its efficiency.  The developed subroutines 

can be further optimized, by software developers, to minimize computational costs.  

1.5 Research overview 

Different steps are involved in developing the new contact algorithm and 

implementing it in DYNA3D and these steps are presented in the following chapters. In 

Chapter 2, a brief overview of finite element method theories and contact-impact are 

given. An extensive review of literature on contact mechanics and the recent work in the 

same area is presented. The concept behind various contact algorithms that are currently 
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available is presented along with their advantages and limitations. Theory behind 

different contact enforcing mechanics is also presented.  

In Chapter 3, an overview of the non-linear finite element code “DYNA3D” that 

is used in this study is presented. Some of the theories used to implement the various 

features in DYNA3D are explained along with a summary of DYNA3D code.  

In Chapter 4, the concept used in the proposed contact algorithm is explained. The 

methods incorporated for the global and local searches are explained in detail. The 

subroutines that are added and subroutines that are modified to implement the contact 

algorithm in DYNA3D are presented.  

Next step in developing the algorithm involved validation by simulating problems 

that have analytical solutions. In Chapter 5, problems that are used in the validation 

process and results from the simulations are presented.  

Several examples were simulated using the proposed contact algorithm to show the 

differences and improvements over current DYNA3D contact algorithms. The results 

from these comparisons are presented in Chapter 6.  

Finally, concluding remarks and recommendations for future research are presented 

in Chapter 7.   
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2. LITERATURE REVIEW 

 

Accurate and efficient contact algorithms play an important role in structural 

analyses and vehicle crashworthiness simulations. Hence improvement of existing 

contact algorithms and development of new ones have been given importance in the field 

of finite element analysis.  

Contact algorithms have seen significant improvements since the beginning of finite 

element computer programs in late 1960s and early 1970s. There has been numerous 

published works on numerical methods of analysis of contact interactions. All relevant 

work has been reviewed and analysis of various contact search methods is presented in 

this chapter.  

2.1 Review of contact algorithms 

Contact algorithms can be broadly classified according to the concept utilized for 

the description of motion of a continuous medium: Lagrangian and non-Lagrangian. In 

Langrangian contact algorithms, the nodes move with the velocity of the material 

medium. In non-Lagrangian, the nodes either are fixed (Eulerian algorithms) or move 

independently of the material medium (Arbitrary Lagrangian-Eulerian, ALE, algorithms).  

The contact algorithm may be considered as consisting of two parts. The first part 

is a search algorithm which is used to detect and measure overlap or interpenetration of 

regions of the structure. The second part accounts for the mechanics of contact by 
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applying appropriate interface tractions between surfaces in contact and, depending on 

the algorithm in use, may modify displacements, velocities, and/or accelerations to be 

consistent with the current contact constraints. Contact algorithms can also be classified 

into two main categories based on the procedure they use to prevent interpenetration: 

Lagrange multiplier method and penalty method. Two more methods are derived from 

these methods and they are augmented Lagrangian method and perturbed Lagrangian 

method. These methods are explained later in section 2.1.3. 

The current contact algorithms use the principle of preventing “slave” nodes from 

penetrating “master” segments. Slave and master are designations given to distinguish 

two bodies or entities or elements. A segment corresponds to a 4-node shell, a 3-node 

shell or a face of a brick element. The number of operations required for searching for 

contact pairs, “node-segment”, is proportional to the square of the number of contact 

segments or nodes. For problems with large number of nodes, this process requires 

significant computational effort and may lead to non-practical times for solving the 

problem. Hence, the search process is divided into two or more levels to accelerate the 

process of detection of contact pairs. The two levels are usually referred to as the global 

search and the local search.  

On the global search level, the regions of possible contact are searched among 

groups of neighboring nodes. The groups of nodes that lie far away from the region of 

possible contact and, therefore, not involved in the contact are rapidly discarded. On the 

local level, contact pairs are identified by the violation of impenetrability constraint or by 

a sufficient proximity criterion. 
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Few of the well-known global search algorithms are, the bucket sorting algorithm 

(Belytschko, 1987; Benson, 1990; Hallquist 2005), the spherical sorting algorithm 

(Papadopoulos, 1993), the hierarchy-territory algorithm (Zhong, 1996), and the linear 

position code algorithm (Oldenburg, 1994). Several local search algorithms that have 

been proposed are pinball algorithm (Belytschko, 1989; Hallquist, 1985), node-to-

segment algorithm (Belytschko, 1991; Hallquist 2005), and inside-outside algorithm 

(Wang, 1997). Based on the similar concepts as these local search algorithms, several 

other algorithms have been developed to improve accuracy and efficiency of the search. 

To name a few, free-formed-surface (FFS) algorithm (Wang, 2001), no-binary-search 

(NBS) algorithm (Munjiza, 1998), algorithm using space-filling curve (SPC) (Diekmann, 

2000), direct localization using pinball algorithm (Petkevicius, 2003), splitting pinball 

algorithm (Belytschko, 1993) and parallel contact algorithm (Malone 1994). Each of 

these contact algorithms is described briefly with their strengths and weaknesses. 

 

2.1.1 Global Search Algorithms 

2.1.1.1  Bucket­Sort Algorithm 

Bucket-sort algorithm (Hallquist, 2005) is the most commonly used global search 

algorithm and it generates a reasonable neighborhood definition. The contact surface is 

divided into number of ‘buckets’. The term ‘bucket’ is used instead of ‘neighborhood’ in 

computer science literature. Each node is assigned a bucket number and all nodes with 

the same number define a neighborhood. The buckets are sized such that if a node is 

compared to all of the segments having nodes in its bucket to the left or the right, all 

possible overlap pairs are obtained. In two and three dimensions buckets are nested. In 



www.manaraa.com

11 
 

two dimensions, each bucket is a square, and is surrounded by eight neighbors. Each 

node is compared against all the nodes in its bucket and the eight neighboring buckets. In 

three dimensions, each bucket is a cube and surrounded by 26 buckets, forming a 3 x 3 x 

3 cube. The dimensions of the buckets do not have to be the same in all directions.  

Figure 2-1 shows one-dimensional, two-dimensional and three-dimensional bucket 

sorting. 

 

Figure 2-1 One-, two- and three-dimensional bucket sorting 

The smaller the bucket-size the fewer nodes in each bucket, and consequently the 

smaller the number of segment comparisons. A smaller bucket size, however, allows the 

possibility of missing an overlapping/intersecting pair. 

Sorting is not done at every time step in explicit analysis as it becomes 

computationally very expensive. The results of a sort are used for several time steps 
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because the incremental displacements over a time step are small relative to the mesh 

dimensions.  But in implicit analysis, where the time step is significantly larger and the 

displacements are greater over each time step, a complete sort is performed at the 

beginning of every time step. In an explicit calculation, the three nearest neighbors are 

stored after each sort, and the closest node is calculated from them each time step. No 

local search is performed if the nearest neighbor is greater than a bucket away. By 

adopting this strategy, a complete sort is done every five to twenty time steps.  

The main advantage of this algorithm is that it is about 150 to 800 times faster 

than a brute force global search when it is three-dimensional analysis. A drawback of this 

algorithm is that it is likely to fail if the contact surfaces become highly distorted 

compared to their initial configurations, due to the restriction of the search to the closest 

neighborhood of each contacting node. 

2.1.1.2  Spherical­Sorting Algorithm 

Spherical-sorting algorithm (Papadopoulos, 1993) uses the idea of a pinball 

algorithm (Belytschko, 1989) to decide whether a local search is needed between a 

contact pair. Pinball algorithm is explained in detail later in this chapter. In spherical-

sorting algorithm every element face is superscribed in an imaginary sphere of the 

smallest possible radius. Then every pair of faces from the two surfaces is checked for 

intersection of corresponding spheres. Non-intersecting pairs are discarded and 

intersecting pairs are checked for local contact. Figure 2-2 shows example of a non-

intersecting pair and an intersecting pair. 
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Figure 2-2 Non-intersecting and intersecting pair 

The advantage of this algorithm is that it is quick to decide if a local search is 

needed between a contact pair once the radii of enclosed spheres and their centers are 

computed. But the disadvantage is that every pair is checked for intersection at every 

cycle. Even though it is simple to check a pair just by finding distance between centers 

and comparing it with sum of radii of the pair, a large number of elements in the contact 

will substantially increase the time required for each cycle compared to bucket-sort. 

2.1.1.3  Hierarchy­Territory Algorithm 

In Hierarchy-territory algorithm (HITA) (Zhong, 1996; Belytschko, 1993), 

hierarchical relation in a contact system along with contact territory is used. Contact 

hierarchy and contact territory are defined.  

A contact system may contain one or more contact bodies, a contact body may 

contain one or more boundary surfaces, a contact boundary may be divided into several 

contact segments, and a contact segment may contain three or more contact edges. A 

contact segment is defined using two or more contact nodes. In each system multi level 

hierarchical is obtained which contains contact bodies, contact boundaries, contact 
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segments, contact edges and contact nodes. In the pyramid of hierarchy, the contact 

system is at the top and the contact nodes are at the bottom. 

Contact territory of segments, edges and nodes are defined. Contact territory of a 

segment is defined using the contact edges, outward unit normal vector and thickness. 

For an edge, outward normal vectors and thicknesses of the segments it shares are 

considered. For a node, all the possible unit normal vectors that belong to the edges that 

share the node, and thickness, are used to define the contact territory. Figure 2-3 shows 

the contact territories of a node, an edge and a segment. 

 

Figure 2-3 Contact territories of a node, an edge and a segment 

To find whether or not a given contact node lies outside the contact territory of a 

contact object, the hierarchy territory is used. Hierarchy territory of a segment is a box 

with its upper and lower limits are obtained by maximum and minimum values of the 

contact territories of entities in the hierarchy below it. For a reliable search, hierarchy is 

expanded by a small amount, and it is known as expanded territory. When territories at 

the same hierarchical level are tested, the absence of a common territory means that 

further testing on lower-level hierarchical elements can be trivially rejected. When a 

common territory is detected, the search proceeds with testing between elements on the 

lower levels of the hierarchy, which are enclosed or intersected by the common territory. 

A contact node is said to form a test pair with a contact segment or a contact edge or 
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another contact node if the contact node lies within the expanded territory of the contact 

segment or the contact edge or that other contact node. Once a contact pair is formed, 

local search is performed at each time step, in which the matched nodes are checked for 

contact with the actual segment and the segments in the closest neighborhood of the 

matched segment.  

The advantage of this algorithm is that it is efficient when there are multiple 

contact bodies in a contact system which may get in contact with each other only 

occasionally during the time domain of interest. The drawback of this algorithm is that it 

cannot generate reasonable contact territory when outward normal vectors of segments 

are not in the same direction. This algorithm is well suited for simulations with contact in 

small parts of the mesh and where the contact areas are not overlapping too much 

(Diekmann, 2000). But in the case of large overlapping areas or nested objects, this 

algorithm does not perform as good as the position code algorithms which are discussed 

later in this chapter. 

2.1.1.4  Linear Position Code Algorithm 

Linear position code algorithm (Oldenburg, 1994) uses an idea similar to that of 

the bucket sort algorithm and hierarchy algorithm. In this algorithm, each segment is 

checked for the presence of contact nodes situated within the segment territory. Segment 

territory is defined as the smallest cubic box that encloses the contact territory of the 

segment, and contact territory of the segment is defined using outward normal and 

thickness of the segment. Contact territory and segment territory of a two dimensional 

segment is shown in Figure 2-4. 
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Figure 2-4 Contact- and segment-territory of a segment 

Once the contact and segment territories have been constructed, the detection of 

contact nodes within the segment territories is performed with an algorithm based on 

sorting and searching in one dimension. The mapping from three dimensions to one 

dimension is achieved by the definition of a discrete position code. The three-

dimensional space containing the contact surfaces of the model is divided into cubic 

boxes and each box is assigned a number relative to its position in the global co-ordinate 

system. All contact nodes are assigned a position code corresponding to the position box 

where they are currently situated. The expression for the position code is given by 

zyxxzyc bbBbBBp ++=                                                                                    (2.1) 

where cp  is the position code and zyx bbb ,,  are the box numbers in x, y and z dimension 

respectively, and zyx BBB  and  ,  are their maximum numbers respectively. Three-level of 

hierarchy is defined which consists of contact surfaces, contact segments and contact 

nodes. If several contact surfaces are defined in the system, the position codes for the 

contact nodes are stored in a position code vector defined for each surface. The position 

code vector is processed to find out position code numbers that correspond to position 
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boxes which are intersected by the segment territory. All contacting nodes in those 

position boxes are checked for the contact with the segment.  

The efficiency of this algorithm is influenced by the choice of two parameters, the 

expansion of the territories and the size of the position boxes. Larger territory expansion 

decreases searching frequency with increase in local search procedure. Larger position 

boxes increases local search with decrease in binary search operations. Hence it depends 

on the user to choose an optimal combination of the two.  

The computation cost of this algorithm is n log n, where n is the number of nodes. 

This algorithm is input sensitive; i.e., the cost function is only related to the input of the 

system, which in this case is the number of nodes. Even when the two contact bodies are 

far from each other, meaning that there are no contact element interactions to be found, 

the searching algorithm will still require time of order (n log n). 

2.1.1.5  Space­filling Curve Algorithm 

Space-filling curve algorithm (SPC) (Diekmann, 2000) is a variant of the linear 

position code algorithm, which is used for global contact search. Instead of row-wise 

ordering like in the position code algorithm, SPC uses numbering technique that follows 

a space-filling curve.  

The row-wise ordering implies one major disadvantage: Segments which are 

oriented vertically are more expensive than horizontal ones (Diekmann, 2000). To 

overcome this drawback, SPC algorithm uses a curve which visits all boxes in some kind 

of N-like order (Lebesgue curve). This curve is defined in a recursive manner and 

preserves high locality. 
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SPC algorithm divides search area into quarters. These boxes are numbered 

depending on their position with the binary codes 00 (bottom left), 01 (top left), 10 

(bottom right) and 11 (top right). The division is continued recursively up to certain pre-

defined level. Each child box gets assigned a code which is the code of its parent box 

concatenated with 00, 01, 10, or 11. This gives a unique key for each box mapping the 

Lebesgue curve into the searching area. A position code is then assigned to each node. 

The position code is the box number the node is placed in, and all the nodes are sorted 

according to it. 

Two additional values, number of boxes of the lowest level in x- and y- direction 

are stored for each node in order to update the position code of the nodes efficiently. 

Based on the position codes, local search for contact penetration or gap is carried out. 

 

2.1.2 Local Search Algorithms 

2.1.2.1  Node­to­segment Algorithm 

Node-to-segment algorithm (Hallquist, 1985) is the most common local contact 

search used in general finite element codes. It uses the principle of preventing slave 

nodes from penetrating master segments. A segment corresponds to a 4-node shell, a 3-

node shell or a face of a brick element. This interface treatment may be outlined as: 1. 

For each slave node, locate closest master node, and check the master segments that 

include the master node to identify the segment, if any, containing the slave node. 2. 

Locate the position of the slave node on the master surface. 3. Determine if slave node 

has penetrated the master segment. 
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Determination of master segment containing slave node 

Consider a slave node, ns, sliding on a smooth master surface and assume that 

search of the master surface has located and stored the master node, nm , lying closest to 

ns, as shown in Figure 2-5. To minimize the operation count, the search for the closest 

node only includes the closest node from the previous time step, old
mn  and its surrounding 

nodes which are available in the connectivity of the segment that contain old
mn . 

 

Figure 2-5 Determination of nearest master node 

If nm  and ns do not coincide, ns can usually be shown to lie in a segment si via the 

following tests: 
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Vectors ci and ci+1 are along edges of si and point outward from nm , and vector s  is the 

projection of the vector beginning at nm , ending at ns and denoted by g, on to the plane 

being examined as shown in Figure 2-6.  



www.manaraa.com

20 
 

 

Figure 2-6 Projection of slave node on to nearest master segment 

mmggs )( ⋅−=                                                                                                   (2.3) 
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 Determination of the contact point 

Once the master segment has been located for slave node sn , the ‘contact point’ 

on master segment is identified. Contact point is defined as the point on the master 

segment which is closest to ns.  

The contact point coordinates ζ c,ηc( ) on si is identified by using bilinear parametric 

representation,  
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ζ j ,  η j  take on their nodal values at ±1,±1( ), and x i
j  is the nodal coordinate of the j th  

node in the i th  direction.  
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If t  is a position vector drawn to slave node ns, and r is the vector drawn to the contact 

point, as shown in Figure 2-6 then following equations are satisfied. 
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                                                                          (2.6) 

Once the contact point is determined, each slave node is checked for penetration 

through its master segment. If the slave node does not penetrate, nothing is done, but if it 

does, an interface force is applied between the slave node and its contact point. The 

magnitude of this force is proportional to the amount of penetration. Equal and opposite 

forces are applied to the slave node and master segment 

Magnitude of the penetration is calculated using 

( )[ ]cci rtnl ηζ ,−⋅=                                                                                            (2.7) 

where ni is the normal vector of the master segment si. Interface force is applied if l is 

negative. 

The above method of contact search is very effective when the contact surfaces 

are smooth and convex, and the mesh quality is good. When the elements have poor 

aspect ratios, as shown in Figure 2-7, this method fails to identify the correct nearest 

master segment. Also when the contact system has elements from different parts that are 

not connected to each other, this method fails as it checks for new nearest node among 

the nodes that are connected to the master segment from previous time step. There is no 

notion of connectivity on the slave side in this contact algorithm which leads to 

undetected penetration as shown in Figure 2-8.  
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Figure 2-7 Incorrectly identifying nearest master node in a severely deformed mesh 

 
Figure 2-8 Undetected penetration 

 

2.1.2.2  Pinball Algorithm 

The concept behind the pinball algorithm (Belytschko, 1989) is to enforce the 

impenetrability condition and define the interpenetration via a set of spheres, or ‘pinballs’ 

which are embedded in the finite elements as shown in Figure 2-9. Each element is 

embedded in different pinball, regardless of whether it is a shell or solid element. Contact 

constraint is enforced on the spheres rather than the elements, and thus reducing the time 

required by the contact algorithm. Checking contact and penetration between two 

elements becomes computing the distance between two pinballs embedded in the 

elements. 
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Figure 2-9 Elements embedded in pinballs 

In three-dimensional analysis, a sphere or pinball, is embedded in each of the 

hexahedral elements of the mesh and the radius is determined by setting the volume of 

the sphere equal to the volume of the element. The center of each sphere is the average of 

its nodal coordinates. They are given by 
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where R is the radius of the pinball andV e  is the volume of element e, Ci are the 

coordinates of the center of the sphere, x Ii
e  are the co-ordinates of node I of element e. 

Radius of the sphere for each element is kept constant throughout the simulation 

assuming the volume of the element doesn’t change.  

The detection of the impacting pairs is, computationally, a very simple procedure. 

The distance between the centers of each slave pinball and each master pinball is 
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calculated and then compared with the sum of radii of the two elements. Interpenetration 

is said to have occurred when the distance is less then sum of radii i.e., 

21 RRd +<                                                                                                          (2.9) 

where d is the distance between the centers of elements 1 and 2 and R1, R2 are the radii of 

elements 1 and 2. 

In the penalty form of the algorithm, whenever overlap of pinballs is detected, 

equal and opposite forces proportional to the magnitude of the interpenetration are then 

applied to the centers of the pinballs. These forces are then transferred to the nodes of the 

elements in which the pinball embedded. 

The advantage of this algorithm is that, it is simple and identical regardless of 

what type of contact is involved. When combined with a penalty method of treatment, it 

involves almost no iterative calculations or conditional statements; hence it is amenable 

to vectorization. Shortcoming of this method is that it cannot be used for problems where 

sliding and friction are crucial such as in crashworthiness. Inaccurate geometrical 

representation and non-usage of compressible materials make this algorithm less 

desirable in complicated finite element analysis. When the shell elements are thin 

compared to their length, accuracy of this algorithm deteriorates. Also when two thin 

shell elements are initially in contact, this method fails. 

2.1.2.3  Inside­Outside Algorithm 

Inside-outside algorithm (Wang, 1997) uses position vector and normal vector of 

a contact point to check whether there is any penetration of this point on the contact 
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surface. Once a contact node and contact surface pair has been identified by global 

search, this algorithm determines the contact point on the contact surface and the 

distance—gap or penetration—from the node to the contact point. 

First the position of the contact node, either inside or outside, with respect to the 

segment is defined.  This can be done using either of the two methods. The first method 

is based on ‘mesh-normal’ of the node. Mesh normal of a node is evaluated by averaging 

all surface normal vectors of the connective elements, as shown in Figure 2-10. When the 

projected point of the node along its mesh normal direction is located inside the polygon, 

the node is regarded as inside the segment, else it is considered outside the segment.  The 

second method consists of checking relative position of the node with respect to edges of 

the segment. A contact segment need is not only a 3-node or a 4-node element; it can be a 

polygon of any number of sides. 

 

Figure 2-10 Surface mesh normal of node I 

For triangular segments, edge inside-outside status detection is performed three 

times. Similarly, for quadrilateral segments, the detection is checked four times. Any 

convex polygon can be checked using the same concept. Figure 2-11 shows the inside-

outside status check of a node on a 4-node segment. 
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Figure 2-11 Inside-Outside check on a 4-node segment 

The inside-outside status of a node is checked by considering all the edges, 

assuming the segment has counterclockwise connectivity: if all edges are found “inside” 

or all edges are found “outside” then the node projects inside the segment, else, the node 

projects outside the segment. In the outside situation, the node is contacting the segment 

from its opposite direction of the projection vector. 

When the projection of node is found to be inside the polygon, the distance 

between the node and the surface segment is calculated along the mesh normal vector. 

Using the position vector x of a projection point, the penetration (or gap) is obtained as: 

)xx(n I
tg −⋅=                                                                                                (2.10) 

where gt  > 0 means a gap (no penetration) and gt  < 0 means penetration. The case where 

gt  = 0 indicate that the node lies on the surface segment, xI  is the position vector of node 

and “n” is normal vector of surface.  

Important features of this algorithm are that it requires no iteration, and eliminates 

multiple contact possibilities of the nodes with contact surfaces. A unique contact point is 

obtained using the mesh normal of a node. Limitation of this algorithm is that surface 
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normal of the master and slave elements should face each other. Even though polygon of 

any number of sides can be used, the segment has to be convex. This algorithm may 

result in error near the intersection edge of two bilinear contact segment surfaces if the 

mesh of the segment surface is not fine enough. 

2.1.2.4  Free­formed­surface Algorithm 

Free-formed-surface (FFS) algorithm (Wang, 2001) is developed to improve the 

accuracy of the contact searching by reducing inaccuracies generated during the finite 

element meshing.  In this algorithm, the three-dimensional contact area is approximated 

with free-formed-surface patch. This is to make the geometry smooth and accurate for 

contact searching and contact stress analysis. 

 

Figure 2-12 Parametric surface patch and surface patch 

A parametric surface patches are constructed to describe the continuous body 

surface using the nodal coordinates, as shown in Figure 2-12. A surface patch is 

constructed between two nodes using a smooth curve as shown in Figure 2-12. Each 

curve segment is joined to its neighbors in a continuous fashion. Surface patches are tied 

together in such a way that continuity with the neighboring patches is assured, at least to 

the first-order gradient. Considering the case of four nodes of a quadrilateral segment and 
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other eight nodes surrounding the segment, the parametric equation of the free-formed-

surface patch is given by: 

( ) ( ) ( )∑∑
= =

−− −−=
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where x u,w( ) is the Cartesian representation of the surface patch, u and w are two 

independent parameter variants in the range [0,1], and ( )3,2,1,0, =jicij  is the coefficient 

vector.  

Subdivision of the surface patch is done by dividing the patch along its curves. 

Smaller sub-patches are more closed to planes than the previous sub-patch. The more the 

subdivision of levels, the higher the accuracy of contact searching will be. 

For each contact pair, which consists of a slave node and a master segment 

formed at global searching level, a free-formed-surface patch is constructed using the 

master segment nodes and the neighboring nodes. The patch is subdivided into sub-

patches depending on the accuracy level needed and the slave node is projected on to 

these sub-patches in the direction normal to the sub-patches. This projection point is 

checked if it lies on any of the sub-patch. If it is found on the sub-patch, then penetration 

(or gap) is calculated, which is given by: 

 ( ) nxx ⋅−= sng                                                                                                (2.12) 

where n is the unit normal vector at the contact point x.  

Although it is an advantage to have no numerical iteration in this algorithm, it gets more 

accurate only when the sub-patch subdivision gets smaller. About 5 subdivision levels are 
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required to obtain acceptable accuracy. This algorithm cannot reach satisfactory results 

for systems containing sharp corners or highly deformed elements. When elements 

deform severely compared to their initial configuration, un-accommodated FFS patches 

may be obtained by which accuracy of contact search decreases rapidly. When sharp 

corners are necessary, they have to be treated differently, as two or more elements 

sharing a common edge on the sharp corner as separate ones. All discrete elements are 

approximated with identical spheres/discs.  

2.1.2.5  Splitting Pinball Algorithm 

The accuracy of the pinball algorithm deteriorates when it is applied to shell 

elements that are relatively thin compared to their length. Also pinball algorithm fails 

when two thin shells are initially in contact. The splitting pinball algorithm (Belytschko, 

1993) is a variation of the pinball approach where the developers tried to overcome some 

of the shortcomings of pinball algorithm.  

As in the original pinball method, in the splitting pinball method, a pinball is 

associated with each element. Unlike in original pinball method where the radius of the 

pinball is calculated such that volume of pinball is equal to volume of element, in 

splitting pinball method the radius is always chosen large enough so that it completely 

envelopes the element. This large pinball is called the parent pinball.  

Interpenetration of parent pinballs now indicates the possibility of interpenetration 

of elements. Whenever overlap of parent pinballs is detected, another level of smaller 

pinballs is constructed, in which the diameters of the last pinballs in hierarchy are of the 

order of the thickness of the shell. Figure 2-13 shows few examples of pinball hierarchy 
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and Figure 2-14 shows an example of interpenetration. If penetration is detected on this 

level, penalty forces are applied to these pinballs. Subsequently these pinball forces are 

transferred to the nodes of the associated element. 

 

Figure 2-13 Pinball hierarchy of 4-node shell element 

 

Figure 2-14 Detection of penetration using pinballs 

The splitting pinball algorithm possesses the advantage that it is not necessary to 

distinguish surface-to-surface contact from edge-to-surface contact. It doesn’t require any 

special input from the user. The disadvantage of this algorithm is that the contact surfaces 

are represented only by a coarse approximation. When higher order elements are used 

and sliding contact and friction are very important these approximations induce error. 

2.1.2.6  Direct Localization Algorithm 

Direct localization algorithm (Petkevicius, 2003) uses the concept of splitting 

pinball algorithm but avoiding the splitting process which decreases the efficiency. 
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Instead of checking for penetration from the parent level pinball and keep splitting 

pinballs until the diameter becomes the thickness of shell, this algorithm checks the nodal 

position of one quadrilateral to that of the other quadrilateral element.  

In direct localization algorithm, slave and master elements called projectile and 

target elements, several pinballs are generated in the quadrilaterals of the projectile. The 

higher the number of pinballs, the higher the precision is. At the lowest level, only one 

pinball is generated which is located in the center of a quadrilateral finite element. When 

one pinball per element does not satisfy the precision requirements, then the number of 

pinballs is increased as shown in Figure 2-15. 

 

Figure 2-15 Different splittings of quadrilateral element 

The pinballs are projected onto the target element, and the distance between the center of 

the pinball and its projection is calculated using equation (2.13).  
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where D is the distance between the pinball center and the middle surface of the target 

element; u and v are local coordinates on the target element; zx nnn y  , ,  are projections of 
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the vector connecting the pinball center and the target element; 

zyxzyx PPPPPP 444111  , , ,..... , ,  are nodal coordinates of the target elements; and zyx QQQ  , ,  

are coordinates of the center of the pinball. 

If the projectile pinball projects onto the target element and the distance D is less 

than half of the sum of the thickness of the projectile and target elements, penalty forces 

are computed and applied to the nodes of the projectile and target.  

Although the direct localization approach has the advantage of a significant 

decrease in computational time compared to the splitting pinball algorithm, it has the 

disadvantage, similar to other pinball algorithms, that it doesn’t represent the actual 

geometry for contact search. This becomes critical if sliding contact and friction are 

important in the analysis.  User has to do several simulations to identify the number of 

pinballs required to get a reasonable degree of accuracy in contact search. 

 

2.1.3 Contact Mechanics 

Once the contact search is complete and the depths of penetrations are computed, 

the next step is to remove the penetrations by applying appropriate forces. The forces 

should be accurate in magnitude, direction, and location. The process is known as contact 

mechanics and the forces are called contact constraints.  

For the most part, numerical methods used for implementing contact mechanics in 

transient finite element analysis may be broadly classified into either Lagrange multiplier 

or penalty function methods. However, for high-velocity impact problems in which 

transfer of momentum, rather than structural deformation is the dominant effect at the 
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contact interface, a different methods based on momentum conservation have been 

developed. Lagrange multiplier methods are alternatively referred to as mixed or hybrid 

variational methods by some authors and penalty methods are commonly referred to as 

‘contact’, ‘gap’, or ‘joint’ element methods. For transient analyses by explicit integration, 

penalty methods have received the most attention in the literature and in commercial 

finite element programs. 

2.1.3.1  Lagrange Multiplier Method 

A brief review of the classical Lagrange multiplier method is presented below 

(Fortin 1983). 

The finite element semi-discretized equation of motion is expressed in general form as: 

 ( ) RUUFUM =+ &&& ,                                                                                           (2.14) 

where M  is the mass matrix, U is the vector of displacement degrees of freedom, U&  is 

the velocity, U&&  is acceleration, F  is the internal force vector, and R  is the external force 

vector. In addition to the usual prescribed boundary conditions, it is assumed that the 

solution of equation (2.14) is also subject to surface contact displacement constraints. 

These constraints may be expressed as: 

 { } 0=+ XUG                                                                                                    (2.15) 

where X  is the material coordinate vector, the sum of U  and X  is the spatial coordinate 

vector and G  is a surface contact displacement constraint matrix. The components of G  

are typically unknown in the beginning and generally change as displacement and 

deformation occur. Motion of slave and master nodes is tracked and as contact occurs, 

displacement constraint components are introduced in G . During contact, the 
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components of G may change with time as required to ensure that the associated contact 

force reactions satisfy contact force conditions.  

The Lagrange multipliers are introduced into the equation of motion to give: 

( ) RGUUFUM =++ λT&&& ,                                                                                (2.16) 

where the components of the Lagrange multiplier vector λ are the surface contact forces. 

The Lagrange multiplier method proceeds by treating λ as unknown and solving 

equations (2.15) and (2.16) simultaneously. 

To summarize, Lagrange multiplier method, which solves for the unknown 

Lagrange multipliers, exactly enforces the kinematic impenetrability constraints on 

displacements and, when necessary, applies special impact and release conditions to 

correctly determine velocities, accelerations, and tractions over the contact interface.   

Since for each constraint condition a Lagrange parameter is introduced and it 

appears in the list of unknowns, the dimension of the resulting system of equations will 

increase. In addition, the associated tangent matrix is indefinite and has zero diagonal 

entries that pose some difficulties in the solution step. In this approach, the system of 

equations cannot be solved in an explicit way. The Lagrange multiplier matrix has to be 

inverted at each cycle of computation. In the case of auto-contact, the number of points in 

the contact can become significant and this formulation then becomes quite expensive. 

Based on classical Lagrange parameter procedure, few other versions of contact 

procedures are developed such as augmented Lagrangian (Fortin, 1983; Malone, 1994) 

and perturbed Lagranian procedure (Simo, 1985). 
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2.1.3.2  Penalty Methods 

Unlike the Lagrange multiplier methods where addition of Lagrange parameters 

increases the dimensions of the solution, the penalty methods enable one to transform the 

constrained problem into an unconstrained one without introducing additional variables. 

The constraint condition is now satisfied only approximately for finite values of the 

penalty parameter. 

The penalty method assumes from the outset that the impenetrability condition 

will be violated. This results in solutions that satisfy the contact conditions only 

approximately. Nodal contact forces normal to the contact surface are essentially 

computed by multiplying the amount of penetration by an arbitrarily defined penalty 

parameter. The accuracy of the solution depends strongly on the penalty parameter. The 

choice of penalty parameters for both the normal and tangential forces is primarily 

determined from numerical experience. In explicit time integration schemes, large 

penalty parameters may cause numerical instability. Therefore, penalty parameters are 

typically chosen conservatively at the expense of allowing greater amounts of 

penetration. However, in some analyses, the penalty number is defined by the problem 

itself using a specific formulation. 

2.2 Need for a new contact algorithm 

Although several contact-impact search methods are available, none of them are 

suitable for all situations. Each of them has its own advantages and disadvantages, as 

explained in the previous sections, and users have to choose among them depending on 

his/her need. This can lead to the need of several simulations before Factors to consider 

while choosing a contact-impact algorithm are: whether the analysis is implicit or 
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explicit, Eulerian or Lagrangian, whether the contact surfaces are convex or concave, 

type of elements used and whether the contact search is between surface-to-surface, edge-

to-surface or edge-to-edge.  

Although significant progress has been achieved in the development of contact 

algorithms, there is still a need for improvement in both the efficiency and the reliability 

of the algorithms. The primary concerns for contact searching are computational cost, 

accuracy and robustness. Conventional algorithms use the principle of preventing ‘slave’ 

nodes from penetrating ‘master’ segments. There is no notion of connectivity on the slave 

side in a contact algorithm. 

In summary, the drawbacks of the currently available algorithms:  

• The determination of the interpenetration requires iteration and consequently does 

not vectorize well; 

• Because only interpenetration between finite elements nodes and elements are 

checked, the surface-to-surface and edge-to-surface contacts shown in Figure 2-16 

cannot be detected; 

 

Figure 2-16 Surface-to-surface and edge-to-surface failure 
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• The algorithm is ambiguous in situations such as shown in Figure 2-17. A slave 

node which do not see the edges and has come to the other side of master surface 

will be interpreted as a spurious penetration. To avoid such ambiguities, master 

segments have to be carefully defined, i.e. a prior knowledge of the master 

elements which are likely to be penetrated by slave nodes is required; 

 

Figure 2-17 Ambiguous situation during nodes-to-surface contact 

• Multiple contacts between a slave node and more than one master segment such 

as shown in Figure 2-18 can cause difficulties. 

 

Figure 2-18 Multiple contacts 

• Concept of using pinballs for checking interpenetration decreases accuracy of the 

geometry and hence diminishing the robustness of the contact search. This causes 

Nearest master node 

Slave node 
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serious problems especially if significant sliding between the segments occurs and 

also when friction between components is important.  

• In complex simulations, the users might need to do several simulations before 

correctly identifying all contacts. In case of pinball algorithms, they might need 

more simulations to identify the level or number of pinballs to obtain the required 

accuracy. 

2.3 Contact Validation Tests 

To address some of the problems mentioned in the previous section, a new contact 

algorithm is developed and implemented in DYNA3D public code. Process of 

development and implementation is explained in Chapters 4 and 5. Before the new 

contact algorithm can be used with confidence, it should be assessed for accuracy and 

stability. Two commonly used tests to assess the robustness of contact algorithms are: the 

Hertz contact test and the contact patch test. The next sections present a summary of 

these two tests.  

2.3.1 Hertz Contact Test 

Very few problems involving contact can be solved analytically. Contact between 

the two bodies occurs over many small areas, each of which constitutes a single asperity 

contact (Hertz, 1882). Well known theoretical solution on single asperity or single point 

was developed in the late nineteenth century by Hertz (Adams, 2000) which has become 

to known as Hertz contact problem. Hertz investigated the elastic contact of two spheres 

and derived the pressure distribution in the contact area as well as the approach of the 

spheres under compression. The assumptions of this problem are: (1) the contact area is 

elliptical; (2) each body is approximated by an elastic half-space loaded over the plane 
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elliptical contact area; (3) the dimensions of the contact area must be small compared to 

the dimensions of each body and the radii of curvature of surfaces; (4) the strains are 

sufficiently small for linear elasticity to be valid and (5) the contact is frictionless, so that 

only a normal pressure is transmitted. 

Figure 2-19 shows partial view of two bodies, 1 and 2, in contact.  If there is no 

pressure between the bodies, the contact is at one point ‘O’. When load P is applied 

between the bodies, the contact area becomes elliptical.  

 

Figure 2-19 Hertz contact of two nonconforming elastic bodies 

For the case of solids of revolution, the contact area is circular. The interference 

‘δ’, contact radius ‘a’ and maximum contact pressure ‘p0’ are given by 
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In the above equations, p0 is the maximum contact pressure (which occurs at 

r = 0 ), *E  is the composite Young’s modulus, 21,EE  and 21,νν  are the Young’s modulii 

and Poisson’s ratios for the lower and upper body respectively, P is the normal load, R is 

the composite radius of curvature and 21  , RR  are the radii of curvature of the lower and 

upper bodies respectively.  

Analogous expressions may be written for the contact of two cylindrical bodies 

whose long axes are parallel to the y-axis. The results for half-width of the contact strip 

and the maximum contact pressure are  
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 where ′P  is the applied load per unit length of y-

direction.    

For a sphere on a flat plate, ∞→2R , so 
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Figure 2-20 shows the configuration of sphere on a flat plate and sphere on a spherical 

cup. 

Figure 2-20 Sphere on a flat plate and sphere in a spherical cup 

P P 
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2.3.2 Contact Patch Test 

When it comes to an element, it is known that every ‘element’, whether it is from 

a meshed approach or a meshless one, must possess certain properties to guarantee its 

validity, i.e. it must be consistent and convergent (Timoshenko, 1970). Zero stress 

condition during rigid body movement and constant stress condition when subjected to a 

linear displacement field are the two conditions that are usually used to verify. For an 

‘element’ formed in slide-line (or mesh matching) procedures, similar requirements on its 

quality must hold, particularly, the preservation of uniform displacements (stress 

distribution) across the interfaces under uniform loading. This in the contact context is 

often called contact patch test (El-Abbbasi, 2001; Taylor, 1991; Sacco, 1995). If a contact 

formulation fails this test, fictitious localized stresses will occur across the contact 

surfaces. Sometimes, they become substantially large so as to undermine the prediction of 

stress distributions on the interfaces.  

Different researchers use different contact patch test problems to verify 

consistency and stability of the contact algorithms.Figure 2-21 shows a simple contact 

patch test problem used in this research.  Two rectangular plates that are on the same 

plane were made to contact each other on their edges. Two edges of the bottom plate and 

one edge of top plate are constrained as shown in the Figure 2-21. A uniform load is 

applied on the top edge of the top plate and stresses and displacements along the contact 

surfaces are observed. 
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Figure 2-21 Simple contact patch test problem 
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3. DYNA3D OVERVIEW 

 

DYNA3D is a part of set of public codes developed at the Lawrence Livermore 

National Laboratory. It is a general-purpose finite element code based on explicit time 

integration for analyzing the transient response of three dimensional, non-linear, 

dynamic, large displacement problems. The first version of DYNA3D was released in 

1976 and since then it has come a long way in its capability and user convenience. Even 

though initial focus was in military applications, DYNA3D has been used in various 

fields including automotive crashworthiness and roadside hardware structure analysis.  

DYNA3D has numerous features that allow for the analysis of several nonlinear 

dynamic problems. It has several element formulations that include one-dimensional truss 

and beam elements, two-dimensional quadrilateral and triangular shell elements, two-

dimensional delamination and cohesive interface elements, and three-dimensional 

continuum elements. Various material models are available to represent, a wide range of 

material behavior including elasticity and plasticity, composites, thermal effects and rate 

dependence. The most advantageous capability of DYNA3D over other finite element 

codes is its contact algorithm. It has sophisticated contact interface capability including 

frictional sliding and single surface contact.  

In this chapter, a brief overview of DYNA3D features and the theory behind these 

features are presented. Only the features that are relevant to this study are covered. These 

include the explicit finite element method, the time step, and the contact interface.  
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3.1 Explicit Finite Element Method 

DYNA3D uses a displacement-based, Lagrangian, central-difference finite element 

formulation to solve for the dynamic response of nonlinear structural problems. The 

formulation makes use of Cauchy’s first law of motion and principle of virtual work to 

determine the potential energy equation. The potential energy equation is then discretized 

in space through the finite element mesh and shape functions. It is then discretized in 

time through the explicit central difference method to derive the dynamic equations of 

motion. In this section, the DYNA3D explicit finite element formulations are derived and 

the theories behind these formulations are presented.  

3.1.1 Principle of virtual work 

In this section, first, a general three dimensional problem to be solved is stated. 

Then, principle of virtual displacements, which is used as basis of finite element 

solutions, is discussed and the finite element equations are derived. 

 

Figure 3-1 A general three-dimensional body 
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A three-dimensional body, as shown in Figure 3-1, is located in a fixed 

(Lagrangian) space. The body is subjected to traction forces ti (t) (forces per unit area) 

over a portion of its outer surface St, prescribed displacements di (t) over the surface Sd, 

and external body forces bi (t) (forces per unit volume) over its entire volume V. 

 The solution to this problem must satisfy the following differential equations: 

௜௝,௝ߪ   ൅ ௜ܾߩ െ ሷ௜ݔߩ ൌ 0  over the volume of the body V                           (3.1) 

௜௝ߪ   ௝݊ ൌ  ௜    over the traction surface St                                 (3.2)ݐ

௜ݔ   ൌ ݀௜    over the displacement boundary Sd                    (3.3) 

where ߪ௜௝ denotes Cauchy’s stress tensor, ߩ is the material current density, and ݊௜ is the 

outward normal unit vector to the traction surface St. 

Equation (3.1) is Cauchy’s first law of motion, which ensures that the linear 

momentum of the system is conserved. Equation (3.2) is the traction boundary condition 

which must be satisfied at each particle on the surface St. Equation (3.3) is the 

displacement boundary condition equation which must be satisfied over the surface Sd. 

These equations are said to state the problem in the strong form, meaning the differential 

equations have to be satisfied at every point in the body or in the surface. While solving 

the problem numerically using the finite element method, the problem is defined in the 

weak form. In the weak form, the conditions do not have to be satisfied at every point in 

the body, but only on an average or integral sense. 

The weak form equation to the general problem in Figure 3.1 is derived from the 

principle of virtual work. An arbitrary virtual displacement ݔߜ௜, that satisfies the 
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displacement boundary condition in Sd, is introduced. Multiplying equation (3.1) by the 

virtual displacement and integrating over the volume of the body leads to, 

׬   ൫ߪ௜௝,௝ ൅ ௜ܾߩ െ ܸ݀ ௜ݔߜሷ௜൯ݔߩ ൌ 0௩                                                                       (3.4) 

For equation (3.4) to be valid for any arbitrary virtual displacement, the term 

between the brackets should be equal to zero, which is equivalent to equation (3.1). 

Using one of the mathematical properties of differentiation,  

  ൫ߪ௜௝ݔߜ௜൯
,௝

ൌ ௜ݔߜ௜௝,௝ߪ ൅  ௜,௝                                                                       ( 3.5)ݔߜ௜௝ߪ

and substituting for the first term in equation (3.4) leads to,  

׬  ቀ൫ߪ௜௝ݔߜ௜൯
,௝

െ ௜,௝ݔߜ௜௝ߪ ൅ ௜ݔߜ ௜ܾ ߩ െ ௜ቁݔߜ ሷ௜ݔ ߩ  ܸ݀ ൌ 0௏                                  (3.6) 

From the divergence theorem, the first term of the equation (3.6) can be expressed as, 

׬  ൫ߪ௜௝ ݔߜ௜൯
,௝

 ܸ݀ ൌ ׬  ൫ߪ௜௝ ݔߜ௜൯ ݊௜ ݀ܵௌ೟௏                                                                (3.7) 

Using equation (3.2), equation (3.7) can be written as, 

׬   ൫ߪ௜௝ ݔߜ௜൯
,௝

 ܸ݀ ൌ ׬  ௜ ݀ܵௌ೟௏ݔߜ ௜ݐ                                                                        (3.8) 

From the symmetry of the stress tensor, the second term in equation (3.4) can be 

expressed as,  

׬   ܸ݀ ௜,௝ݔߜ ௜௝ߪ ൌ ׬ ଵ
ଶ

൫ߪ௜௝ ݔߜ௜,௝ ൅ ௝,௜൯ܸ݀௏௏ݔߜ ௝௜ߪ   

               ൌ ׬ ௜௝௏ߪ  ௜௝ ܸ݀                                                                    (3.9)ߝߜ 
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where ߝߜ௜௝ is the virtual strain tensor attributed to the virtual displacement ݔߜ௜. 

Substituting equations (3.8) and (3.9) into equation (3.6), we get 

  െ ׬ ܸ݀ ௜ݔߜ ሷ௜ݔ ߩ െ ׬ ௜௝ ܸ݀௏ߝߜ ௜௝ߪ ൅ ׬ ௜ ܸ݀௏ݔߜ ௜ܾ ߩ ൅ ׬ ܵ݀ ௜ݔߜ ௜ݐ ൌ 0௦೟௏       (3.10) 

Equation (3.10) is a statement of the principle of virtual work for the general three 

dimensional problem defined in Figure 3-1. 

The next step in deriving the finite element equation is spatial discretization. This 

is achieved by subdividing the complex geometry of the body into small simpler shapes 

called elements. The elements are interconnected at the corners through nodal points. To 

establish continuity of the displacement field throughout the finite element mesh, 

interpolation function, also known as shape functions, are introduced. These shape 

functions establish a relationship between the displacements at inner points in the 

elements and the displacements at the nodal points. Using shape functions, the 

displacement at any point can be expressed as, 

௜ݔߜ    ൌ ∑ ఈܰ ݔߜఈ௜
௡
ఈୀଵ                                                                                         (3.11) 

where ݔߜ௜ are the displacements at any point inside the element, n is the number of nodes 

in the element, Nα is the shape function at node α, and δxαi are the displacements at node 

α. Similar expressions can also be written for the coordinates, velocities and acceleration 

of a point inside the element.  

The finite element equations are derived by discretizing the virtual work equation 

(3.10) in space. This is achieved by first writing an approximation of the virtual work 
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equation as the sum of the potential energy at each element in the system. Equation (3.10) 

can be written as,  

  ∑ ቄ׬ ݀ ௜ݔߜ ሷ௜ݔ ߩ ௠ܸ ൅ ׬ ௜,௝݀ݔߜ ௜௝ߪ ௠ܸ െ ׬ ݀ ௜ݔߜ ௜ܾ ߩ ௠ܸ െ௏೘௏೘௏೘
ெ
௠ୀଵ

׬ ௜ ݀ܵ௠ௌ೟ݔߜ ௜ݐ
ൟ ൌ 0                                                                                           (3.13) 

where M is the total number of elements in the system and Vm is the volume of the 

elements. Replacing δxi and ݔሷ௜ with the equations using shape functions, we get,  

   ∑ ቄ׬ ሷఉ௜൯ ሺݔ൫ ఉܰ ߩ ఈܰݔߜఈ௜ሻ ݀ ௠ܸ ൅ ׬ ௜௝ ൫ߪ ఈܰ,௝ݔߜఈ௜൯݀ ௠ܸ െ௏೘௏೘
ெ
௠ୀଵ

׬ ௜ ሺܾ ߩ ఈܰݔߜఈ௜ሻ ݀ ௠ܸ െ ׬ ௜ ሺݐ ఈܰݔߜఈ௜ሻ ݀ܵ௠ௌ೟௏೘
ൟ ൌ 0                                                   (3.14) 

where ݔߜఈ௜ and ݔሷఈ௜ are the virtual displacement and the accelerations at the nodal points 

respectively. Equation (3.14) can be simplified and rewritten as, 

 ∑ ቄ׬ ݀ ఈܰ ఉܰ ߩ ௠ܸ௏೘
ቅெ

௠ୀଵ ሷఉ௜ݔ ൌ

∑ ׬ ఈܰ ߩ ܾ௜ ݀ ௠ܸ௏೘
ெ
௠ୀଵ ൅ ∑ ׬ ఈܰ ݐ௜ ݀ܵ௠ െௌ೟

ெ
௠ୀଵ ∑ ׬ ఈܰ,௝ ߪ௜௝ ݀ ௠ܸ௏೘

ெ
௠ୀଵ                      (3.15) 

In matrix form, equation (3.15) reduces to,    

  ሾMሿሼxሷ ሽ ൌ ሼFሽ                                                                                                   (3.16) 

where [M] is the mass matrix, ሼxሷ ሽ is the acceleration vector and {F} is the vector sum of 

all internal and external forces. Equation (3.16) is the finite element equation that needs 

to be solved in time.  
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3.1.2 Time discretization 

If the applied forces vary with time, the equilibrium equation (3.16) is a statement 

of equilibrium for any specific point in time. Hence the problem discretized in time 

domain and the finite element equations are satisfied at discrete points in time rather than 

at all points in time within the interval of the solution. The time interval between two 

successive points in time, tn  and tn+1 is known as the time step Δtn Δtn = tn+1 − tn( ). The 

time step has significant influence on the accuracy on the explicit finite element solution.  

Several direct integration methods have been developed and are classified into 

implicit and explicit methods. The average acceleration (trapezoidal rule), the Fox-

Goodwin (royal road), and the linear acceleration are examples of implicit method and 

central difference method is example of explicit.  

DYNA3D uses central difference method for discretizing the finite element 

equation in time. In this method, the velocity vector is lagged by half the time step. In 

other words, the displacement and acceleration vectors are computed at times 

t1,...,tn,tn+1,...,t f  (where t f is the final problem time) and the velocity vector is computed 

at times t1/ 2,...,tn−1/ 2,tn+1/ 2,...t f −1/ 2 . To advance to next time step, following equations are 

used: 

nnnn tavv Δ+= −+ 2/12/1                                                                                        (3.17) 

2/12/11 +++ Δ+= nnnn tvuu                                                                                    (3.18) 

101 ++ += nn uxx                                                                                                  (3.19) 

( )
2

1
2/1

+
+ Δ+Δ

=Δ
nn

n ttt                                                                                      (3.20) 



www.manaraa.com

50 
 

3.2 Time Step Criteria 

The choice of time step is critical in explicit finite element analysis. A large time 

step can make the solution unstable while a small time step can make the computation 

cost expensive. To ensure stability of time integration, the global critical time step has to 

be small enough such that the stress wave does not travel across more than one element at 

each time increment cycle. Therefore, it is important to compute critical time step 

accurately. It can be achieved using Courant criteria 

c
Lt s

e =Δ                                                                                                           (3.21) 

where etΔ  is the critical time step of the element, sL is the characteristic length of the 

element and cis the sound speed. 

For one dimensional elements, sL  is the length of the element and c is given by 

ρ
Ec =                                                                                                             (3.22) 

where E and ρ are the Young’s modulus and density of the material respectively. For 

two-dimensional elements c is given by 

( )21 νρ −
=

Ec                                                                                                  (3.23) 

where ν is Poisson’s ratio. The global time step is the minimum value over all elements. 

 ( )N
n tttt ΔΔΔ=Δ + ,...,,min* 21

1 α                                                                       (3.24) 
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where α is a scale factor typically set some value smaller than 1 and N is the number of 

elements.  

3.3 Contact Interface Equations 

Contact-impact algorithms in general purpose FE codes can treat interaction of 

many bodies.  Although the two bodies are interchangeable with respect to their 

mechanics, in some equations and algorithms the bodies are distinguished as master and 

slave. Nodes lying on those surfaces are referred to as master and slave nodes 

respectively. 

Consider two-body problem shown in Figure 3-2. Let Ω A  and Ω B  be current 

configurations of the two bodies and S A  and S B  be their surface boundaries respectively.  

 

Figure 3-2 Notations of two bodies in contact 

The common contact surface (interface) S C  between two bodies is defined by 

BAc SSS ∩=                                                                                                    (3.25) 
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The contact interface is a function of time, and its determination is an important 

part of the solution of the contact-impact problem. Designating body A as master and 

body B as slave, the normal for master surface at any point is given by  

BAA
2

^

1

^
een ×=                                                                                                   (3.26) 

where e
^

1
A  and e

^
2

A  are unit vectors in local coordinate system tangent to the surface. 

On the contact surface 

BA nn −=                                                                                                           (3.27) 

 i.e. the normals of the two bodies are in opposite directions. The velocity fields are 

expressed in terms of local components by  
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vnv

vnv

+=

+=
                                                                                          (3.28) 

where vT  are tangential velocities. The range of tangential velocities is 2 in three-

dimensional problems and single tangential vector in case of two-dimensional problem. 

The normal velocities are given by: 

BBB
N

AAA
N

v

v

nv

nv

⋅=

⋅=
                                                                                                   (3.29) 

The contact adds the following conditions to the standard governing field equations: the 

bodies cannot interpenetrate and the tractions must satisfy the momentum conservation 

on the interface. Furthermore, the normal traction across the contact interface cannot be 

tensile. 
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3.3.1 Impenetrability condition 

In a multi-body problem, the bodies must observe the impenetrability condition. 

The impenetrability condition for a pair of bodies can be stated as 

0=Ω∩Ω BA                                                                                                     (3.30) 

that is, the intersection of the two bodies is the null set. In other words, the two bodies are 

not allowed to overlap, which can also be viewed as a compatibility condition. The 

impenetrability condition is highly nonlinear for large displacement problems, and in 

general cannot be expressed as an algebraic or differential equation in terms of the 

displacements. The difficulty arises because in an arbitrary motion it is impossible to 

anticipate which points of the two bodies will contact.  

Because it is not feasible to express impenetrability condition in terms of 

displacements, it is convenient to express the equations in rate form or incremental form 

in each stage of the process. The rate form of the impenetrability condition is applied to 

those portions of bodies which are already in contact, i.e. to those points which are on the 

contact surface S C . It can be written as 

 0≤−≡⋅+⋅= B
N

A
N

BBAA
N vvnvnvγ  on CS                                        (3.31) 

The impenetrability condition restricts the interpenetration rate for any points on the 

contact surface to be negative, i.e. when the two bodies are in contact they must either 

remain in contact or they must separate. 
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3.3.2 Traction conditions 

The tractions must observe the balance of momentum across the contact interface. 

Since the interface has no mass, this requires that the sum of tractions on the two bodies 

vanishes: 

 0=+ BA tt                                                                                                          (3.32) 

By Cauchy’s law, tractions on the surfaces of bodies are defined as, 

BBB

AAA

nt
nt

⋅=

⋅=

σ

σ
                                                                                                      (3.33) 

where σ is the Cauchy stress tensor. The normal tractions are defined by 

ABB
N

AAA
N

t

t

nt

nt

⋅=

⋅=
                                                                                                     (3.34) 

Normal component of momentum balance is obtained by taking dot product of equation 

(3.32) with the normal vector n A , which gives 

0=+ B
N

A
N tt                                                                                                    (3.35) 

Since adhesion between the contact surfaces in the normal direction is not considered, the 

normal tractions cannot be tensile. This condition can be stated as 

0≤−== B
N

A
NN ttt                                                                                           (3.36) 

The tangential tractions are defined by 

BB
N

BB
T

AA
N

AA
T

t

t

ntt

ntt

−=

−=
                                                                                                (3.37) 
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so the tangential tractions are the total tractions projected on the master contact surface. 

Momentum balance requires that 

 0=+ B
T

A
T tt                                                                                                    (3.38) 

 

3.4 DYNA3D Source Code 

The source code for DYNA3D is written in FORTRAN. It consists of over 800 

subroutines and more than 87,000 lines and constantly being updated and enhanced in its 

capabilities. The code is vectorized to take advantage of vector registers and reduce 

computation time. Since vector registers are generally some multiple of 64-bit words, 

vector lengths of 64 or its multiples are used. In DYNA3D, elements are sorted by their 

number, material type and connectivity and arranged them into groups of 128. Vector 

processing can lead to significant jumps in execution efficiency, especially when large 

amount of data has to be processed. The elements in each group are processed 

simultaneously instead of computing one element at a time. Unlike a scalar processor 

which process one instruction at a time, a vector processor processes multiple instructions 

simultaneously as long as the operations are independent of each other, thus reducing 

computation time. Vectorizing the code also improves parallel computation efficiency in 

which more than one processor is used to do the computation. The vectorization process 

adds complexity to the source code. Furthermore, the memory usage in DYNA3D is 

minimized by storing all information in one large array. This method is very efficient 

because memory is allocated only to the variables that are used in the model. This method 

of sorting information adds further complexity to the source code.  
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Because the source code is quite large, fully vectorized, and uses one array to store 

all information; the task of understanding the DYNA3D source code requires a 

considerable amount of time. This task, however, is made easier because the program is 

well structured. Flowchart for DYNA3D source code is shown in Figure 3-3. The 

flowchart is simplified for clarity. 

The source code consists of three main subroutines: the input phase, the initiation 

phase, and the solution phase subroutines. In the input phase, the finite element model is 

read in from the input file and checked for errors. In the initiation phase, all variables are 

set to their initial values and the boundary conditions such as initial velocities and nodal 

constraints are imposed. These first two phases are performed once in the beginning of 

the simulation and usually require very little computation time when compared to the 

solution phase. In solution phase, a time integration loop based on the explicit central 

difference method is executed. A flow chart of the solution phase is shown in Figure 3-4. 

After each cycle of the solution phase loop, the simulation time is incremented by the 

time step and the next cycle is performed. This process is repeated until the final 

simulation time is reached. In a typical simulation, thousands of cycles are computed 

before the final simulation time is reached. Hence, most of the computation time is 

consumed in the solution phase.  

During each cycle of the solution phase several steps are performed as shown in 

Figure 3-4. In the first step, the accelerations are computed by dividing the nodal force by 

the corresponding nodal mass. These accelerations are then modified to reflect the 

imposed boundary conditions and nodal constraints. In the next step, the velocities and 

displacements are updated using the central difference method equations. The pressures, 
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concentrated loads, and body forces are then computed and added to the nodal force 

vector. Next, the solid, beam, thin shell, thick shell, and discrete elements are processed 

and the resulting internal forces are added to the nodal force vector. The contact forces 

are then computed and incorporated in the nodal force vector. In the final step, the 

simulation time is incremented by the time step and the next cycle is started.  

Significant portion of the computation time in DYNA3D is spent in checking 

elements for contact and updating contact force vector. Different contact interfaces are 

treated differently. The most popular and commonly used contact interface is ‘single 

surface contact’. The first step in this algorithm is to sort all the slave nodes and find out 

the minimum and maximum coordinates in X, Y, and Z directions. These extremum 

coordinates form the contact space, and this space is divided into ‘buckets’. Next, all the 

slave nodes are sorted among the buckets and each node belong to one or the other 

bucket. This is called bucket sorting. Next, for each node, distances between the node and 

all other nodes in its bucket as well as its neighboring buckets are calculated and a nearest 

master-node is identified. Among the segments connected to the master-node, the nearest 

master-segment containing the slave-node is identified. And in the final stage, a slave-

node—master-segment pair is checked for penetration and forces are calculated if 

penetration is found. This force is added to the nodal force vector. 
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Figure 3-3 Simplified flow chart for DYNA3D 
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Figure 3-4 Flow chart for solution phase in DYNA3D 
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4. CONTACT ALGORITHM IMPLEMENTATION 

 

Approximately half of all the problems associated with numerical simulations of 

crashworthiness analysis are caused by contact search. The main problems in current 

contact algorithms originate in the node-to-segment nature of the model definition and in 

the search algorithms that define which nodes are in contact with which segments. In 

particular, treating node-to-segment conditions only leads to a systematic failure of 

detecting edge-to-edge or edge-to-segment penetrations. Early search algorithms detected 

a nearest master node for each slave node and selected a single nearest master segment 

from all segments connected to the nearest master node. This is an algorithm that works 

very well for the simulation of the contact of two smooth convex surfaces, but fails in 

many situations that occur in the high curvature failure modes such as in automotive 

structures. In particular, multiple impacts may occur simultaneously, and high curvatures 

and irregularity in the meshes may easily lead to the detection of a wrong neighbor 

segment, allowing numerous penetrations to remain undetected. 

Most of the recent research on contact algorithms is aimed at improving the 

efficiency (making them faster in terms of computation). Hence there is a need for a 

contact algorithm which is more accurate in detecting penetrations and applying forces 

than the existing ones. In this chapter, new global and local search techniques along with 

an improved force-calculation method are introduced. The algorithms that are modified 
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and algorithms that are added to implement new contact algorithm in DYNA3D are 

presented. 

 

4.1 Contact algorithm considerations 

To improve the contact search accuracy in DYNA3D, a new contact algorithm 

based on penalty formulation is added to the code. In implementing the contact algorithm 

several considerations were taken into account to ensure its generality and practicality. 

The main considerations are: 

• The algorithm should provide accurate results. Even though importance was not 

given to the efficiency, the algorithm should not take unrealistic computational 

time. DYNA3D is an explicit finite element code and therefore the computation 

time is directly related to the time step size. The element size is predominant 

contributor to the time step size. Consequently, the contact algorithm should not 

do drastic modification to the size and shape of elements.  

• The new contact algorithm should be implemented without restricting or limiting 

the original capabilities of the code. The DYNA3D code is a general-purpose 

finite element code. It has several features such as, different constraints, different 

connection options, different loading options, different material models and 

different type of element formulations. The new contact algorithm should not 

hinder functionality of any of the other features in the code.  

• The contact algorithm should find penetration between all types of elements and 

apply appropriate penalty force to remove the penetration. The penalty force 

should take into consideration the types of elements, material properties of the 
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elements and of course the magnitude of penetration. The new contact algorithm 

should be able to distinguish different types of elements; modify the search 

accordingly and compute the right amount of force.  

• The contact algorithm should be formulated such a way that future improvements 

and new approaches can be easily added without major modifications. Since 

computation speed is constantly increasing and becoming less expensive, new 

ways to improve the accuracy of finite element analysis is constantly being found 

and codes are updated. The new contact algorithm should be structured such a 

way that if necessary these changes are easily incorporated. 

4.2 Contact algorithm limitations 

Implementing a new contact algorithm in DYNA3D that would incorporate all the 

features for all element types and material models involve significant amount of work 

and time. Hence some limitations are put on this contact algorithm to make the task 

achievable in reasonable amount of time. These limitations are only attributed to lack of 

time, not feasibility.  

• The new contact algorithm considers only shell and beam elements. Segments of 

solid elements are not considered in the contact. Little modifications are necessary 

to make the new contact algorithm consider the segments with negligible or zero 

thickness such as segments of solid elements.  

• The new contact algorithm development is limited to elasto-plastic material 

models. As rigid material model has infinite stiffness, material stiffness method 

cannot be used to calculate the contact penalty force. In order to determine 
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penalty forces, the contact algorithms should be able to accept force vs. deflection 

curve as input. This feature is currently not available in the new algorithm and can 

be easily added later.  

• The new contact algorithm assumes frictionless condition and does not compute 

frictional forces. With some additional effort, frictional forces using different 

friction models can be implemented and computed in the algorithm.   

• The new contact algorithm assumes that there is no initial penetration at the 

beginning of simulation. In case of initial penetration, a large force will be applied 

to remove the penetration and this might lead to inaccurate results.  

 

New Contact Algorithm 

The proposed new algorithm, similar to other contact algorithms, is divided into three 

phases: global-search, local-search and penalty-calculation phases. Each of the phases is 

explained in detail in the following sections. 

 

4.3 Global search (sphere­bucket­sort algorithm) 

Sphere-bucket-sort uses the concepts of spherical-sorting and bucket sorting 

techniques. This algorithm uses advantages of both techniques while abridging their 

drawbacks.  

In spherical-sorting algorithm, each and every element in the contact interface is 

superscribed in separate imaginary spheres of the smallest possible radius. Then every 

pair of spheres from the two contact surfaces is checked for intersection. Intersection 
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check is a simple process of finding distance between the centers of spheres and 

comparing it with sum of the two radii of the pair. Non-intersecting pairs are discarded 

and intersecting pairs are checked for local contact.  

In the bucket-sorting algorithm, the reference space is divided into “buckets” and 

every node in the contact is assigned to one of the bucket. The shape of the buckets 

depends on the number of dimensions of the problem. In one-dimensional problem, shape 

of the buckets is column of spaces; in two-dimensional problem it is a square or a 

rectangle; and in three-dimensional problem, it is a cube or a cuboid. The number of 

buckets depends on the element size as well as the size of the model. Once each node is 

assigned to a bucket, the local search process begins. In the local search, each slave node 

is associated with a nearest master node. The nearest master node is selected from the 

nodes in the bucket containing the slave node or the immediate neighboring buckets. The 

nearest master segment is then selected from the group of segments that contain the 

nearest master node.  

Sphere-bucket-sort algorithm takes the following advantages from bucket-sort and 

spherical-sort algorithms. 

1. Bucket-sorting eliminates local-search between the elements which are more than 

one bucket length away from the slave node. 

2. Bucket-sorting is done once every 10 to 15 cycles to minimize the computation 

time. 
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3. Spherical-sorting encloses every element inside an imaginary sphere to find 

intersecting pair. By enclosing each element inside a sphere, every possible 

combination of intersecting pairs is found and local search is done. 

4. Spherical-sorting uses distance check to eliminate the non-intersecting pair of 

elements which is a simple and fast procedure. 

 

Sphere-bucket-sort algorithm eliminates the drawbacks of bucket-sort and spherical-sort 

algorithms: 

1. Bucket-sort updates the nearest master node by checking only the nodes which are 

connected to the element from the previous nearest master segment. This will fail 

to identify the correct master node when the elements are distorted severely 

compared to the initial configuration. 

2. Spherical-sort algorithm checks distance between every pair of elements at every 

cycle and this will substantially increase the computation time if the number of 

elements in contact is large.  

The proposed new global search, sphere-bucket-sort algorithm, instead of 

circumscribing each element in a sphere similar to spherical-sorting, it creates an 

imaginary sphere around each slave node with the center of sphere being the slave node 

itself. The radius of each sphere around the node is just big enough to circumscribe all the 

elements that are attached to that particular node. Centroid calculation of the elements is 

eliminated since the nodes are the centers of the spheres.  

For a node which is connected to just beam elements, the radius of the sphere 

enclosing it will be the length of the longest element it is attached to. The radius of the 
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sphere enclosing a node that is connected to only triangular elements is equal to the 

longest of the edges that the node is sharing. In case of a node connected to quadrilateral 

elements, the radius of the sphere is the longest of all the edges and diagonals that it is 

connected to. Figure 4-1 shows the concept of spheres enclosing nodes.  

Figure 4-1 Concept of spheres enclosing nodes 

Once all the slave nodes are enclosed inside the imaginary spheres, penetrating 

pairs of spheres are identified. This is done by computing distance between the centers of 

a pair of spheres and comparing it with the sum of their radii. A comprehensive global 

search simply takes each sphere and checks to see if it penetrates any other sphere 

enclosing other node. This will be an exhaustive search and the cost of search goes up 

with the number of slave nodes. Hence a neighborhood search (bucket-sort) is done after 

enclosing nodes inside imaginary spheres. 

The bucket-sort is an algorithm that generates a reasonable neighborhood 

definition. The idea behind the bucket sort is to perform some grouping of the spheres so 

that the sort operation needs only to calculate the distance of the spheres in the nearest 

groups. Bucket-sort eliminates most of the non-intersecting spheres without having to 

find distance between them.  
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The bucket-sort is a simple process of sorting.  Like most sorting algorithms, it 

sorts in one dimension; and to sort across two or three dimensions, one-dimensional sorts 

are performed in nested loops. The number of buckets depends on the size of the 

elements as well as the extent of contact surface. It is determined by finding the 

maximum and minimum coordinates of the nodes in each direction and their difference is 

then divided by characteristic length. The characteristic length is calculated by taking a 

fraction of the longest segment diagonal in the surface definition. The number of buckets 

in the x, y, and z coordinate directions are given by 

LMAX
xxNX minmax −

=                                                                                                  (4.1) 

LMAX
yyNY minmax −

=                                                                                                   (4.2) 

LMAX
zzNZ minmax −

=                                                                                                   (4.3) 

where coordinates ( )minmax  , xx ( )minmax  , yy  and ( )minmax  , zz  define the extent of the contact 

surface and are updated each time the bucket searching is performed, and LMAX is the 

longest characteristic length.  

The bucket pointers in x, y, and z directions, of a node whose coordinates are x, y and z, 

are given by 

( )
( ) 1

minmax

min +
−

−
⋅=

xx
xxNXPX                                                                                  (4.4) 

( )
( ) 1

minmax

min +
−

−
⋅=

yy
yyNYPY                                                                                 (4.5) 
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( )
( ) 1

minmax

min +
−

−
⋅=

zz
zzNZPZ                                                                                  (4.6) 

If it were to store bucket pointers in each direction for all the nodes, then memory 

requirement would be very large. To reduce the memory requirements, sorting is nested 

in each direction and three pointers are collapsed into a single index.  This single-index 

bucket-number is given by 

( ) ( ) NYNXPZNXPYPXNB ⋅⋅−+⋅−+= 11                                                   (4.7) 

Figure 4-2 shows bucket pointers and single-index bucket-number. 

 

Figure 4-2 Bucket pointers and single-index bucket numbers 
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• Find maximum and minimum dimension of the sphere in each direction using 

radius and center of the sphere.  

• In each direction, find maximum and minimum bucket-pointer that sphere will 

intersect viz., bkx1, bkx2, bky1, bky2, bkz1 and bkz2 

• Calculate bucket number using  

Bucket-number = ( ) ( ) NZNYkNXji **1*1 −+−+  

• Update the bucket-number list with the node number. 

Once every bucket has been updated by nodes which it intersects, every sphere in 

the bucket is checked for intersection with other spheres in the same bucket. Non-

intersecting pairs are disregarded and intersecting spheres are saved for local search.  

4.4 Sorting frequency 

If sphere-bucket-sort is to be done every time step, the cost of computation 

increases significantly. In explicit finite element analysis, there is no need for sorting 

every time step as the critical time step is very small and the incremental displacements 

over a time step are very small relative to the mesh dimensions. In typical explicit finite 

element crash analysis the element size is approximately 5 to 7 mm and critical time-step 

is approximately one microsecond. At this element size and time-step, elements moving 

at 35 mph will displace about 0.0156 mm in one cycle (time-step). At this rate, it takes 

about 320 to 625 cycles for two elements which do not intersect in one sort to penetrate 

in next sort. At present, to be on safer side, sorting is done every 100 cycles. If the 

contact is used in high-speed impact simulation, the sorting frequency should be 

increased.  
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4.5 Local Search 

When the sorting frequency is reduced, the cost of local search dominates the 

contact search cost. The local search presented here doesn’t distinguish between different 

shell elements. A 4-node quadrilateral element is treated as two 3-node triangular 

elements. This section briefly explains the algorithm used in the local search. The local 

search is divided into two parts: beam-to-beam penetration check and beam-to-triangle 

penetration check. Assumptions and computations involved in both parts are explained.  

The local search is performed only if two spheres S1 and S2 around nodes n1 and 

n2, as shown in Figure 4-3, are identified as intersecting pairs by the global sphere-

bucket-sort.  In this case, all elements connected to node n1 are checked against all the 

elements connected to node n2.  Each element is treated once as slave and once as master 

while checking against another element.  From this treatment, the solution is identical at 

all times. 

 

Figure 4-3 An example of intersecting pair 
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4.5.1 Beam­to­beam penetration check 

While checking for penetration between two elements E1 and E2, the edges of 

both elements are checked against one another. The edges are treated as beams of circular 

cross section and radius equal to the thickness of the corresponding element. Each corner 

is treated as a sphere of radius equal to the thickness of the element. The final shape of 

the beam as seen during local search is as shown in Figure 4-4. 

 

Figure 4-4 Geometric surface of a beam seen by contact algorithm 

The beam-to-beam penetration check is done by calculating the shortest distance 

between two beams and comparing it with the sum of their radii. If the shortest distance 

between the two is less than the sum of the radii, then magnitude of penetration is given 

by the taking the difference of sum of radii and shortest distance.  

Figure 4-5 shows notations used in a beam-to-beam check. The first step is to find 

if the beams are parallel to each other. Let u be the vector from node 1 to node 2, v from 

node 3 to node 4, and w from node 1 to node 3. 

 

Figure 4-5 Notations used in beam-to-beam check algorithm 
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The two beams are said to be parallel if the following condition is satisfied: 

02 ≤− BAC                                                                                                       (4.8) 

where  

uuA ⋅= ,   vuB ⋅=  and vvC ⋅= . 

If the lines are found to be parallel, the perpendicular distance between two infinite lines 

along u and v is calculated using  

( ) 13 NvTNPdist −+=                                                                                         (4.9) 

where N3 is position of node 3, 1N  is position of node 1 and 
vu
wuT

⋅
⋅

=  . 

If Pdist is greater than the sum of the radii of the two beams, then these beams do 

not intersect. If it is less, then further checks are done to see if any portions of these 

beams overlap. If they overlap, more calculations are done to find out how much of the 

beams overlap and midpoints of their overlap. These midpoints of overlap are the points 

where forces are applied.  

If the beams are found to be not parallel, the point of intersection of two infinite 

lines along vectors u and v are found. This point of intersection can be on one of the 

beams, on both the beams, or on neither of the beams. Depending on the point of 

intersection and position of the beams, the shortest distance is calculated using different 

approaches. A few of the various possibilities of beams coming into contact are shown in 

Figure 4-6.  
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Figure 4-6 Various configurations of beams’ contact  

 

4.5.2 Beam­to­triangle penetration check 

The shape of the triangular element is represented by a combination of a 

triangular prism, three cylinders whose axes are edges of element, and spheres whose 

centers are the corners of the element. The coordinates of the three nodes and thickness 

are used to create the prism. This triangular prism is checked with the cylinder shaped 

beam. 

First, the cylinder is extended infinitely in both the directions of the beam to 

check if it intersects the plane of triangle.  If the beam doesn’t intersect the plane, then 

the beam is parallel to the plane of triangle.  In this case, distance between the plane of 

triangle and axis of beam is calculated. If the distance is more than half of sum of 

thickness of triangle and radius of cylinder, the beam does not intersect the triangle. If the 

distance is less, further checks are done to see if any portion of beam overlaps the 

triangle.  
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If beam is not parallel to the plane of the triangle, the intersection point of infinite 

long beam and plane of triangle is found. Figure 4-7 shows the notations used in beam-to-

triangle check.  

Figure 4-7 Notations used in beam-to-triangle check 

The point of intersection between beam and the plane of triangle is found by using  

( ) ( )000 PQfPsP −+=                                                                                      (4.10) 

where 
rn
wnf

⋅
⋅

−=  

This point will be on the beam if 10 ≤≤ f . 

The intersection point is checked if it is inside the boundary of the triangle.  

( ) ( ) ( )
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where s and t  are given by 
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( )
( )
( )
( )unv

unwt

vnu
vnws

×⋅
×⋅

=

×⋅
×⋅

=   
                                                                                                  (4.12) 

This point is in the triangle if s ≥ 0, t ≥ 0 and s + t ≤ 1 

If the point of intersection is not in the triangle or on the beam, then there is no 

penetration between the beam and the triangle. But if the intersection point is on the beam 

and in the triangle, then proximities of this point with respect to all the nodes on the beam 

and the triangle are found and forces are calculated and distributed. 

The depth of penetration is given by taking the difference of ( )
2

21 thkthk +  and ( )un ⋅ , 

where thk1 and thk2 are thickness of triangle and radius of beam respectively.  

4.6 Penalty calculations 

Once the depth of penetration and point of intersection are found by the local 

search method, as explained in the previous section, a massless spring is introduced to 

remove the penetration. The stiffness of the contact spring depends on the material 

properties and type and size of the elements involved.  

The interface stiffness K is determined using both the master and slave surfaces. 

To ensure the stability of the solution, the stiffness is multiplied by a scaling factor which 

can be varied depending on the problem type. The overall contact spring stiffness is 

determined by having stiffness of both the surfaces in series as shown in Figure 4-8. 
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Figure 4-8 Contact surface stiffness in series 

The equation for overall contact spring stiffness is 

21

21
0 KK

KKsK
+

=                                                                                                 (4.13) 

where s  is the stiffness scaling factor. Generally a scale factor of unity or more is used 

for high speed contact problems and a scale factor of less than unity for lower speed 

contact problems.   

K1= surface-1 stiffness 

K2= surface-2 stiffness, and  

K0  = overall contact stiffness.  

If the contact element is a shell element, then surface stiffness for that element is given 

by 

 ( )diagonalshell
AEK ii

i  max
=                                                                                (4.14) 

where E =  Modulus of elasticity 

Ai= Segment area  
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and if the contact element is a brick element, the stiffness is calculated by  

 
i

ii
i V

ABK
2

=                                                                                                        (4.15) 

where Bi = Bulk modulus 

Ai = Segment area 

Vi = Element volume  

The contact force on master surface is computed using 

isc PnKF =                                                                                                        (4.16) 

where Fc is the total contact force, P  is magnitude of penetration, ni is the normal to the 

master segment and Ks  is stiffness which given by 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
PGap

GapKKs 0                                                                                           (4.17) 

where Gap  is smallest of the thicknesses of the two segments. The stiffness is nonlinear 

and varies with the amount of penetration. It increases exponentially as the penetration 

increases. Figure 4-9 shows the difference between forces using constant stiffness and 

variable stiffness. Force using constant stiffness linearly increases as the depth of 

penetration increases whereas force using variable stiffness increases exponentially. It 

can be noted that both the forces are nearly identical when penetration is small, but for 

any reason if penetration could not be removed, the variable stiffness method applies 

significantly higher force compared to the constant stiffness method.  
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Figure 4-9 Penetration-Force curve 

Once the magnitude and direction of contact force on master surface is computed, 

same magnitude of force is applied in opposite direction on the slave segment. Depending 

on the location of the penetration point relative to the segment nodes, the forces are 

distributed using shape functions.  

Shape functions for a beam segment are given by  

f
f
−1

                                                                                                                 (4.18) 

and shape functions for a triangular segment are given by 

t
s

ts −−1
                                                                                                            (4.19) 
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where f , s and t  are as shown in Figure 4-10. 

 
Figure 4-10 Shape functions while applying force 

In summary, the new contact algorithm which includes a new global search method, 

a new local search method and improved contact mechanics has the following 

advantages: 

1. It identifies all possible contact element pairs accurately 

2. It considers accurate geometry of the contact surfaces 

3. Solves the issues with edge-to-edge and edge-to-surface contact checks 

4. Applies exponentially increasing constraint forces so that penetrations are 

removed at all times.  

 

4.7 New contact algorithm implementation 

The new contact algorithm has been implemented in the DYNA3D finite element 

program. It consists of three stages: global search, local search, and force (penalty) 

calculation.  Algorithms for these stages are developed and implemented.  The algorithm 

is developed for one-dimensional beam elements with constant circular cross-section and 

two-dimensional shell elements with constant thickness. Extending this algorithm to treat 
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solid elements involves additional steps of transforming surfaces of solid elements into 

two-dimensional shell elements and performing contact search between those shell 

elements.   

The new algorithm is aimed at improving the accuracy of the current DYNA3D 

contact algorithms.  The current algorithms use bucket-sort and incremental-search for 

global search which fails when the contact surface has high curvature or when the slave 

nodes move at high speed. These algorithms work well for most of the general cases, but 

when it involves significant sliding between the elements, the chances of failing to detect 

the penetration increases.  In the local search, the current algorithms use ‘avoiding 

penetration of slave-nodes on master-surface’ approach.  In this approach, a slave-node 

has only one master-element at a given cycle and in the next cycle, the master-element 

for this cycle will be the same element or one of the elements attached to it.  This 

approach fails when a node approaches two elements symmetrically. These drawbacks of 

the current contact algorithms in DYNA3D are overcome in the new contact algorithm.  

The new algorithm uses spherical-bucket-sort which considers all possible pairs of 

slave-node—master-segment with a reasonable increase in computation time. For local 

search, it uses beam v/s beam and beam v/s triangle approach instead of node v/s 

segment.  This approach eliminates undetected penetrations. 

The implementation of the new contact algorithm in DYNA3D involved modifying 

several subroutines and adding several other subroutines to the code. In this section, the 

modifications made to the original code and the subroutines added to the code are 

described. 
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4.7.1 Modifications to the source code 

The first modification to the DYNA3D code was to allocate extra memory space 

during initialization process for storing the variables required during contact search. This 

is a finite amount of memory space which depends on the number of slave nodes and the 

smallest characteristic length in the model. For ease of implementation, this space is kept 

separate from the other variables space in the code and made user defined.  The user 

needs to be careful while defining this space since allocating less than the minimum 

required may result in error termination. Allocating a larger amount of space than 

required is a good practice and it does not affect computational time required for the 

simulation.  

The next modification to the code was in the input phase subroutines. The input 

format for the new subroutine was kept similar to the original ‘single-surface’ contact 

input. Few subroutines were added to the input phase to read, store and sort the contact 

segments and nodes. This information is stored in the extra memory space that is 

allocated by the user.  

Several other modifications were made to the DYNA3D to incorporate the new 

contact algorithm.  A total of 17 new subroutines were added and two existing 

subroutines were modified.   

 

4.7.2 Added subroutines 

The subroutines that are modified and new ones that are added to the DYNA3D 

code are listed in the Table 4-1. The subroutines uminit, umconnec, umsrtsn and 
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umupdthk constitute addition to the initialization phase. The subroutines umchkbeam, 

umfndbks, uminitbks, uminithk, umradii, umslmrlist constitute global search phase. The 

subroutines umchkdist, umb2b, umb2t constitute local search; and the subroutines 

umbforce and umtforce constitute force calculation phase. The flow chart of this contact 

algorithm is shown in Figure 4-11. The initialization phase subroutines are executed once 

in the beginning of the computation. The global search phase subroutines are executed 

every 100 cycles. The local-search and force-calculation phase subroutines are executed 

at every time increment cycle.  

In the initialization phase, extra memory storage space is allocated for the contact 

calculations. After DYNA3D reads the input file, slave nodes are extracted from the slave 

segments definition and are sorted. The thicknesses of these nodes are extracted from the 

corresponding elements and stored.  The slave segments that connected to each of the 

slave nodes are stored. 

The global search phase is performed once every 100 cycles to minimize the 

computation time.  In this phase, the minimum volume that is orthogonal to the global 

coordinate system and required to enclose the contact surfaces is computed by spanning 

maximum and minimum value in each dimension. Using the minimum characteristic 

length, this volume is then divided into a number of buckets and each bucket is given a 

unique number.  Imaginary spheres around each slave node are constructed with radii 

computed based on the size of elements that the slave nodes are connected to. From the 

intersections of all spheres and buckets, master-slave segment pairs are identified and 

stored in the memory. 
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In the local search phase, each master-slave segment pair is checked for 

penetration. Depending on the type of element, combination of ‘beam-to-beam’ and 

‘beam-to-triangle’ checks are performed and if a penetration is found, the necessary force 

is applied, in the force-calculation phase, on the nodes to overcome penetration. 

Once the new contact algorithm is implemented and validated, several problems 

were simulated using both the new contact algorithm and the current contact algorithm in 

DYNA3D to show the differences and improvements. The results and comparisons from 

these simulations are presented in chapter 5.  
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Table 4-1 New and modified subroutines 

New Subroutines  Description 

umb2b checks penetration between two beams/cylinders 

umb2t checks penetration between a beam and a triangle  

umbforce calculates penalty forces on beams and updates force vector  

umchkbeam checks if the given element is a beam or not 

umchkdist checks if the elements of given nodes have possibility of 

interpenetration 

umconnec makes the list of all the slave segments connected to the given 
node 

umfndbks finds all the buckets to which the given node belongs 

uminit initializes the extra memory storage 

uminitbks initializes the buckets and bucket sizes 

uminithk initializes radii of slave nodes 

umlcsrch does local search between given two elements 

umradii calculates and stores radii of slave nodes 

umsl4 main contact subroutine  

umslmrlist makes list of slave and master elements in the given bucket 

umsrtsn sorts slave nodes 

umtforce calculates penalty forces on triangle and beam, and updates 

force vector 

umupdthk update thickness of nodes 

Modified Subroutines  Description 
dynai reads input and initializes variables 

soltn computes solution phase 
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Figure 4-11 Flow chart for the new contact algorithm 

Initialize Extra Memory Storage 
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5. VALIDATION OF NEW CONTACT ALGORITHM 

 

A new contact algorithm that consists of new global and local search and 

improved force-calculation methods is implemented in DYNA3D. To check validity and 

to demonstrate the general behavior of the new contact algorithm, few element level and 

component level examples are simulated and the results are presented in this chapter. The 

element level examples focus on the cases where DYNA3D fails to detect contacts and 

penetrations using the existing ‘single-surface’ and ‘nodes-to-surface’ contact interfaces. 

The component level examples are: Hertz contact problem, contact patch test, impact 

between two tubes of different mesh densities and crush of a symmetric tube between two 

rigid walls. The Hertz contact problem was simulated to validate maximum stress 

induced in the model. The contact patch test gives an indication of stability and stress 

propagation during a contact impact. An impact between two tubes of different mesh 

densities and symmetric tube crush were simulated to examine the compliance and to 

demonstrate the self-contact search capability of the new contact algorithm.  

5.1 Element level validation 

The element level examples are simple problems in which an element contacts one 

or two elements in different configurations. All elements were assigned elastic material 

properties and the contact was assumed frictionless.  All the examples were also 

simulated using currently available contact algorithms in DYNA3D and the results were 

compared with results from new contact algorithm. 
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5.1.1 Example 1 (Nodes to surface) 

In this example, a small plate was impacted on one end of a big plate. The small 

plate was created using 9 equal size shell elements and the big plate using one shell 

element. A thickness of 3 mm and elastic-plastic material property were assigned to both 

plates. A contact was defined between the plates and the distance between the plates was 

measured. Figure 5-1 shows the initial configuration and velocity vector. 

 

Figure 5-1 Initial configuration and velocity vector of Example 1 

Three different simulations were run using the same configuration. First – using 

the original ‘single-surface’ contact in DYNA3D, second – using ‘nodes-to-surface’ 

contact in DYNA3D and third – using the (new contact algorithm) in DYNA3D. In each 

case the distance between the plates was monitored and the results are shown in Figure 

5-2.  

In the first case, when using ‘single-surface’ contact, the contact fails to detect 

penetration of few of the nodes. With this contact algorithm, in a pool of slave segments, 
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when one slave segment is found penetrating a master segment, the same slave segment 

is not checked with other master segment. This phenomenon can be observed in Figure 

5-3 in which it can be seen that the contact algorithm prevents penetration of node ‘Nb’ 

but not node ‘Na’. When the slave segments were defined in a different order, a different 

behavior was observed.  The distance between node ‘Na’ and the large plate is 

represented by curve ‘A’ in Figure 5-2. 

 

Figure 5-2 Distance between two plates 

Figure 5-3 Failure to detect penetration using single surface contact 

In the second case, using the original ‘nodes-to-surface’ contact algorithm, 

penetration of all slave nodes were detected by the master segment, but the thickness of 

Na 

Nb 
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the segments were not taken into account. The distance between the plates decreases to 

zero before it starts increasing. This is shown as curve ‘B’ in Figure 5-2.  

In the third case, using the new contact algorithm, all penetrations are detected 

and the true thickness of each segment was taken into consideration. Curve C in Figure 

5-2 represents the distance between the small and large plates, and it can be seen that the 

distance between the plates starts increasing after it reaches 3 mm. 

5.1.2 Example 2 (Surface to surface) 

In this example, two equal sized rectangular elements whose widths are smaller 

than their lengths were placed in such a way that their lengths were perpendicular to each 

other. Both elements are assigned elastic-plastic material property and a thickness of 3 

mm. An initial velocity was assigned to the top element such that the face of top element 

impacts the face of bottom element. Three cases were simulated using DYNA3D with 

different contact algorithms. The configuration and velocity vector is shown in Figure 

5-4. 

 

Figure 5-4 Initial configuration and velocity vector of Example 2 
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The first and second cases in which the original ‘single-surface’ and ‘nodes-to-

surface’ contact algorithms are used respectively fail to detect penetration. Since both 

algorithms use the same concept; preventing nodes from penetrating the surface, and no 

node is penetrating any surface in this example, the contacts fail. Curves ‘A’ and ‘B’ in 

Figure 5-5 represents the distance between the two elements. It can be seen that the two 

elements traverse each other without any resisting force. 

 

Figure 5-5 Distance between the elements 

The third case, in which the new contact algorithm was used, detects the 

penetration at the defined thickness and applies appropriate forces on nodes to remove 

the penetrations. Curve ‘C’ in Figure 5-5 shows the distance between the two elements 

for the case of new algorithm. It can be seen that the distance between the elements 

decreases to 3 mm and then increases. By comparing the curves ‘A’ and ‘C’, it can be 
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noticed that the rate of increase of distance between the elements during the rebound 

phase is equal to the approach speed. It can be inferred that the amount of force applied to 

remove the penetration is accurate. 

 

5.1.3 Example 3 (Edge to surface) 

This example is similar to the example 2 except that the faces of elements are 

perpendicular to each other. Both elements were assigned elastic-plastic material property 

and a thickness of 3 mm. The problem configuration and initial velocity is shown in 

Figure 5-6. Element 2 was given an initial velocity such that face of the element 2 

impacts an edge of element 1. 

 

Figure 5-6 Initial configuration and velocity vector of Example 3 

Similar to examples 1 and 2, three cases were simulated using DYNA3D with 

different contact algorithms. In each case the distance between elements was measured to 

see the accuracy of contact algorithms. The results are shown in Figure 5-7. Curve ‘A’ 

and ‘B’ represent distance between the elements when using ‘single-surface’ and ‘nodes-

to-surface’ algorithms respectively. In these cases, the contacts do not detect elements 
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crossing each other and apply no reaction forces. Element E1 penetrates element E2 

without any resistance and the distance between them becomes negative. 

The distance between the elements for the third case is represented by curve ‘C’ 

in Figure 5-7. In this case the new contact algorithm detects the penetration and applies 

forces on nodes to remove the penetration. It is evident from comparing curves ‘A’, ‘B’ 

and ‘C’ that the forces applied in the third case is accurate as the rate of approach of 

elements in case ‘A’ and ‘B’ are equal to the rate of departure in case of ‘C’. 

 

 

Figure 5-7 Distance between the elements 

5.1.4 Example 4 (Edge to edge) 

In this example, two parts; one with two-rectangular elements forming a shape of 

‘V’ and another with one-element in the shape of a rectangle, were made to impact each 

other such that an edge from each part comes in contact. The problem configuration and 
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velocity vector are shown in Figure 5-8. Both parts were assigned the elastic-plastic 

material property and the elements were assigned a thickness of 2 mm.  Three cases were 

simulated using DYNA3D with three different contact algorithms. Similar to the previous 

examples, the original ‘single-surface’, the original ‘nodes-to-surface’ and the new 

contact algorithms were used. 

                

Figure 5-8 Initial configuration and velocity vector of Example 4 

 

Figure 5-9 shows the comparison of minimum distances between the edges in the 

different cases. Curve ‘A’ gives the distance between the edges when the ‘single-surface’ 

contact was used. Curves ‘B’ and ‘C’ show the distances when the ‘nodes-to-surface’ 

contact algorithm was used (two cases with different master surface definitions were 

simulated). Curve ‘D’ shows the distance when using the new contact algorithm. 
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Figure 5-9 Distance between the contacting edges 

 

It can be seen that in case 1 (curve ‘A’), the edge to edge contact was not detected 

and the nodes penetrate without any contact force applied on them.  

Simulation using nodes-to-surface contact algorithm was further divided into two 

sub cases in which the master segments were defined differently. Curves ‘B’ and ‘C’ in 

Figure 5-9 represent these sub-cases. Even though the distances between the edges were 

the same in both the cases, the slave nodes’ behavior was completely different.  Figure 

5-10 shows two different behaviors of slave nodes with two different master segment 

definitions. The contact detects the penetrations of slave nodes with master segment E1 

but not E2. Depending on which element is defined as E1, the slave nodes move away 

from the element E1. Slave nodes are checked for penetration through the first master 

segment and if penetration is found forces are applied and no further checks are done 

with the other master segment. In both cases, the normals of master segments were 



www.manaraa.com

95 
 

pointing towards slave nodes. The behavior of slave nodes depends on the order in which 

master segments are defined.  

      

Figure 5-10 Different behaviors of slave nodes in nodes-to- surface contact 

Case 3, in which the new contact algorithm was used, the penetration is detected 

at the right distance and applies appropriate reaction force. Curve ‘D’ in Figure 5-9 

shows the distance between contacting edges during the simulation. It can be seen that 

the distance decreases to 2 mm, which is thickness of both the parts, and then increases. 

 

5.1.5 Example 5 (Multiple contacts) 

Example 5 is similar to example 4 except that the rectangular element is set up such 

that its contacting the ‘V’ shaped elements from inside. Schematic diagram of the 

problem along with initial velocity vector is shown in Figure 5-11. Both parts were 

assigned elastic-plastic material properties and a thickness of 2 mm. Three cases were 

simulated using DYNA3D with the original ‘single-surface’ , the original ‘nodes-to-

surface’ and the new contact algorithms.  

E1 E2 E1 E2 

E3 E3 
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Figure 5-11 Initial configuration and velocity of Example 5 

 

In the first case, where ‘single-surface’ contact algorithm is used, the penetrations 

are identified but not at right distances. Figure 5-12 shows the two different behaviors 

when the order of slave segments is changed. The numbering represents the order in 

which slave segments are defined. 

 

Figure 5-12 Two different behaviors of slave nodes when using single-surface contact 

Case 1a 

Case 1b 

E1 E2 

E3 

E1 E2 

E3 
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Contact forces are applied on the nodes when slave nodes from E3 are located at a 

distance of 1.23 mm from E1. Then the nodes from E3 are pushed towards E2 till the 

distance between E2 and E3 reaches zero. At this point, a large force is applied on the 

nodes of E2 and E3. Depending on what order the slave segments are defined, the 

behavior of the plates change. Figure 5-13 shows the distance between the edges of two 

plates during the simulation. It can be seen that even though the thicknesses of the 

elements are 2 mm, the distance between the edges becomes less than 2 mm. 

In the second case, where the ‘nodes-to-surface’ contact algorithm is used, the 

penetrations are identified but the distances at which the forces are applied are not 

accurate. The element thicknesses are not taken into consideration while calculating 

penetration. For this case, Figure 5-14 shows the distance between the edges.  

 

Figure 5-13 Distance between edges when using single-surface contact 
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Figure 5-14 Distance between edges when using nodes-to-surface contact 

 

Figure 5-15 shows the distance between the edges during the simulation using 

new contact algorithm. Element E3 comes in contact with elements E1 and E2 

simultaneously and symmetric forces are applied on the nodes. Figure 5-16 shows the 

geometry of the parts when they come in contact with each other. The dotted lines 

represent the boundary of the elements. The smallest distance measured between the 

edges is 2.828 mm. 
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Figure 5-15 Distance between the edges when using new contact algorithm 

 

Figure 5-16 Configuration when elements are in contact 

 

5.2 Component level validation 

In these examples, several capabilities of contact algorithm are validated: ability to 

check contact and penetrations between different size of elements, ability to perform self-

2.828

E

E

E
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contact search, ability to apply right magnitude of force such that accurate stress is seen 

in the elements, and. ability to apply constant stress along the contact surface, In all these 

examples, contact is assumed frictionless.  

5.2.1 Example 6 (Impact between two tubes) 

In this example, the new contact algorithm is tested for its ability to search 

penetration between different size meshes. The results from the simulation are compared 

with the results from the DYNA3D’s single-surface contact algorithm. In this example, 

two cylindrical tubes with their axes perpendicular to each other having an approach 

velocity of 35 m/s were made to impact each other and their general behavior was 

observed.  Each tube was 150 mm long, 3 mm thick and has 100 mm diameter.  Elastic-

plastic with failure material model was chosen for both tubes and tube 1 was more 

coarsely meshed than tube 2. Tube 1 was given an initial velocity of 35m/s and a column 

of nodes in tube 2 were constrained in all directions. The geometry and the initial 

conditions of the tubes are shown in the Figure 5-17 and the finite element configuration 

is shown in Figure 5-18.  

The results from the finite element simulations are shown in Figure 5-19. It shows 

comparison of effective von-mises stress between the single-surface contact algorithm 

using DYNA3D and the new contact algorithm at different stages of simulation. It can be 

seen that the deformed configurations from the two simulations are nearly identical. 

Maximum stress in each case reached 43.1 N/mm2.   
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Figure 5-17 Contact-impact between two tubes -- Geometry and initial conditions 

 

Figure 5-18 Contact-impact between two tubes -- Undeformed FE model 

35 m/s 

Tube 1 

Tube 2 
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Continued… 

  

  

  

Figure 5-19 Contact-impact between two tubes -- Stress configuration 
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5.2.2 Example 7 (Crushing symmetric tube between rigid walls) 

In this example, the ability of the new contact algorithm to search penetration in a 

self-contact scenario is tested. A square tube with grooves and notches on its length is 

fixed at the bottom and crushed from the top using a rigid wall. Elements were assigned 

elastic-plastic with failure material model and 3 mm thickness. Figure 5-20 shows the 

initial configuration of the tube. Since the tube and loading conditions are axisymmetric, 

a ‘quarter’ model would give the same results as that of complete model.  

Figure 5-21 shows comparison of stress states between the original single-surface 

contact algorithm and using the new contact algorithm at different stages of simulation. It 

can be noted from these results that the new contact algorithm is capable of searching 

self-contacts and provides accurate results. 

 

Figure 5-20 Symmetric tube crush -- Initial configuration of full and quarter model 
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Continued…  

            

             

            

Figure 5-21 Symmetric tube crush -- Stress configuration 
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5.2.3 Example 8 (Hertz contact problem) 

The theory behind Hertz contact problem is explained in chapter 2. To simulate 

Hertz contact problem and validate the stresses computed by the code, a finite element 

model of a half-cylinder pressed against a flat base was created as shown in Figure 5-22. 

It is modeled as plane-stress problem with a thickness of 1 mm. Both parts, half-cylinder 

and flat base, were assigned elastic material properties. The half-cylinder was assigned an 

elastic modulus of the 3E5 MPa and a Poisson’s ratio of 0.3.  The flat base was assigned 

an elastic modulus of 1E5MPa and a Poisson’s ratio of 0.33.  A total load of 10 kN was 

distributed equally among the nodes on the top edge of cylinder.  Nodes on the bottom 

edge of the flat base were constrained in all directions. Figure 5-22 shows the model 

setup and finite element mesh at beginning of the simulation. 

The model was simulated using the current contact algorithms in DYNA3D and 

using the new contact algorithm. The results from the simulations were compared with 

theoretical values and are presented in the following section. 

 

Figure 5-22 Finite element configuration of the Hertz contact problem 

P 
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Theoretical maximum compressive stress is given by  

௖ߪ ݔܽܯ ൌ 0.798ට ௉
஽ா(5.1)                                                                                        כ 

where P is the applied load per unit lengths, D is diameter of the cylinder and E* 

is the equivalent elastic modulus which is given by 
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Using the equations 5.1 and 5.2 and the assigned values, theoretical maximum 

compressive stress obtained is 10367.3 N/mm2. This theoretical value is compared to the 

simulation results check the validity of the contact algorithm. 

 

5.2.3.1  Current Interfaces from DYNA3D  

Hertz contact problem was simulated using DYNA3D’s currently available 

contact algorithms. DYNA3D’s ‘single-surface’ and ‘nodes-to-surface’ contacts failed to 

detect the penetration between the two parts. As no node is penetrating any surface, the 

contact interfaces fail. They also fail to check edge-to-edge penetrations since the 

elements are in the same plane. Figure 5-23 shows configuration and pressure distribution 

after few cycles of the simulation. Element stress is zero throughout the model indicating 

no contact force has been applied on any of the element.  
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(a) FE configuration                                         (b) Stress distribution 

Figure 5-23 Using current contact interfaces 

 

5.2.3.2  New contact algorithm using DYNA3D 

Using the newly developed contact algorithm, the Hertz contact problem was 

simulated with three different mesh configurations. The element size and number of 

elements were varied in these configurations. In each case, maximum compressive stress 

is measured at the contact point and compared with the theoretical value. Figure 5-24 to 

5-26 show the stress distribution in the three configurations after simulation reaches 

steady state. Table 5-1 shows the comparison and percentage error in calculating 

maximum compressive stress. 

 

Figure 5-24 Stress distribution in Hertz contact problem, configuration-1 



www.manaraa.com

110 
 

 

Figure 5-25 Stress distribution in Hertz contact problem, configuration-2 

 

Figure 5-26 Stress distribution in Hertz contact problem, configuration-3 

 From Table 5-1, it can be seen that the difference between maximum compressive 

stress and the theoretical value decreases as the element size gets smaller. The difference 

could be for the reason that the stresses are computed at the integration points which are 

at the center of the elements, but the maximum stress will be at contact points. It can be 

shown that solution converges to the exact or theoretical value by making the element 

size infinitesimal. But due to the limitation on computation time, here in this research, 

only the trend towards convergence is shown.  
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Table 5-1 Stress comparison in different configurations of Hertz contact problem 

Configuration Maximum compressive 
stress (MPa) 

Difference from 
theoretical value 

Theoretical 1036.73 -- 
Configuration-1 611.06 41.05 % 
Configuration-2 636.82 38.56 % 
Configuration-3 845.28 18.46 % 

 

5.2.4 Example 9 (Contact patch test) 

The contact patch test is used to assess stability and consistency of the contact 

algorithm by simulating a simple problem.  In this problem, two rectangular plates that 

are on same plane are made to contact each other on their edges. Two edges of the bottom 

plate and one edge of the top plate are constrained as shown in Figure 5-27. A uniformly 

distributed varying load was applied on the top edge of the top plate.  Keeping the total 

applied load constant and varying the mesh densities, three different configurations of the 

problem were simulated.  Maximum stress and stress variation at the contact surface were 

monitored to see whether the contact will induce fictitious localized stresses.  

 

Figure 5-27 Simple contact patch test problem 

P 
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5.2.4.1  Current Interfaces from DYNA3D  

Contact patch problem was simulated using DYNA3D’s currently available 

contact interfaces. Similar to the case of Hertz contact simulation, in the contact patch 

simulation, DYNA3D’s ‘single-surface’ and ‘nodes-to-surface’ contacts failed to detect 

penetration. The elements traverse each other without contact force being applied on any 

of the elements. Figure 5-28 shows the mesh configuration and pressure distribution after 

few cycles.  It can be seen from the stress distribution plot that the elements from bottom 

plate do not experience any stress. Variation in stress in the top plate is due to varying 

point load applied on the top edge. 

 

(a) Mesh configuration                                           (b) Stress distribution 

Figure 5-28 Using current contact interfaces in DYNA3D 

5.2.4.2  New contact algorithm using DYNA3D 

Three different mesh configurations of the contact patch problem were simulated 

using the new contact algorithm. For these configurations, the stress distribution along 

the contact surface and displacements of nodes along the contact surface are measured. 
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Figure 5-29 through 5-11 show stress distribution and displacement of nodes along the 

contact surface.  

From the figures it can be seen that a minimal variation of stresses along the 

contact surface is observed in all configurations. The stress level at locations where the 

nodes from the two plates vertically coincide are slightly but not significantly higher 

compared to other locations. From the figures, the displacement of the nodes along the 

contact surface is uniform. A uniform distance between the plates is maintained 

throughout the simulation once the plates come in contact. Contact forces applied on the 

nodes are accurate to maintain the correct distance between the two plates. Figure 5-35 

shows the distance between the two plates at various locations for configuration-1, the 

nodes being chosen randomly along the length.  

Maximum stress seen in the elements varied with the mesh configuration. Table 

5-2 shows maximum Von-Mises stress seen in different configurations of the model.  

Table 5-2 Maximum Von-Mises Stress from three different configurations 

 Configuration-1 
N/mm2 

Configuration-2 
N/mm2 

Configuration-3 
N/mm2 

Maximum V-M stress 103.74 121.36 231.61 
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Figure 5-29 Stress (V-M) distribution in configuration-1 using new contact algorithm 

 

Figure 5-30 Nodal displacements along contact surface, new contact algorithm, 
cofiguration-1 
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Figure 5-31 Stress (V-M) distribution in configuration-2 using new contact algorithm 

 

Figure 5-32 Nodal displacements along contact surface, new contact algorithm, 
configuration-2 
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Figure 5-33 Stress (V-M) distribution in configuration-3 using new contact algorithm 

 

Figure 5-34 Nodal displacements along contact surface, new contact algorithm, 
configuration-3 
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Figure 5-35 Distance between two plates along the contact surface, configuration-1 

 

5.3 Application problems 

To show the improvements in the new contact algorithm over existing contact 

algorithms in DYNA3D while solving real world problems, two examples are simulated 

and the results are shown in this section. In the first example, an impact between a cable 

guardrail and front fender of a C2500 pickup truck is simulated. Snap shots from this 

simulation at various times are presented in Figure 5-36. In the second example, an 

impact between a portable concrete barrier and bumper of a C2500 pickup truck is 

simulated. Figure 5-37 shows the snap shots from the simulation of bumper and barrier 

impact at various times. In Figures 5-36 and 5-37, results from the simulation using 

current algorithm are shown in left column and results from the new contact algorithm 

are presented in right column. In both the examples, it can be seen that the new contact 

algorithm prevents the penetration and provides more accurate results than the current 

algorithm. 
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5.3.1 Example 1 (Impact between fender and cable guardrail) 

  

  

  

  
Continued… 
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Current contact algorithm                                New contact algorithm 

Figure 5-36 Contact between front fender of C2500 and cable guardrail 
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5.3.2 Example 2 (Impact between bumper and concrete barrier) 

  

  

  

  
Continued… 
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Current contact algorithm                                          New contact algorithm 

Figure 5-37 Contact between bumper of C2500 and portable concrete barrier 
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6. CONCLUSIONS AND RECOMMENDATIONS 

 

Approximately half of all the numerical problems that are encountered during a finite 

element simulation are from contact interfaces. Depending on the complexity and number 

of parts and elements in the model, about half of the computation time is spent on contact 

interfaces. Hence, any error that surfaces due to contact interface algorithms prolongs 

total analysis time.  

Current contact algorithms that are used in explicit finite element codes have come a 

long way in improving their accuracy and efficiency. The majority of the contact search 

algorithms that are used in popular FEM crash codes use the concept of ‘preventing 

slave-nodes from penetrating master-surface’. Using this concept contact algorithms 

detect and remove most of the possible penetrations that occur, however there is still 

room for improvement when it comes to edge-to-edge penetration check and contact 

force computation. With the use of nodal base projection to offset the element thickness, 

some of the edge-to-edge penetration problems have been overcome. To make the contact 

algorithms more accurate in detecting penetrations than what they are today, there is a 

need for new contact search algorithm. The new contact algorithm should be able to 

detect penetrations at all times and apply just enough force to remove those penetrations.  

In this research, a new contact algorithm that includes a new global search method 

and a new local search method has been proposed. Emphasis is given to accuracy in 

detecting penetrations at all times and applying the right magnitude and direction of force 
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at correct locations. A new global search method which uses the concept of enclosing 

spheres around nodes combined with bucket sorting has been proposed. Using this 

method all possible combinations of ‘slave-master’ element pairs which are in contact or 

might come in contact over the next few cycles are identified. The sphere enclosing each 

node has a radius large enough to enclose all the elements that are connected to the node. 

The bucket sorting used in the new global search checks for intersections of spheres with 

the buckets rather than presence of nodes in the bucket that is used in current algorithms. 

Unlike current algorithms which use slave-node—master-segment pair and allocates, in a 

cycle, only one master segment for a slave node, the new algorithm use slave-master 

element pair. From this treatment, if a node is penetrating two or more elements 

simultaneously, every penetration is identified. 

The proposed new local search method assumes uniform thickness across each 

element. The geometric surface of the beam elements was considered to be combination 

of a cylinder and two spheres whose radii are equal to the radius of the beam. The 

geometric surface of shell elements has half-cylinders at the edges and spheres at the 

corners whose diameters are equal to the thickness of the element. With this 

consideration, the geometry of the contact surface is interpreted accurately and problems 

associated in finding penetration in a skewed mesh are eliminated.  

Constant stiffness that is used in computing contact force in current contact 

algorithms is replaced by exponentially varying stiffness in the new contact algorithm. 

When compared to the constant stiffness, the varying stiffness applies significantly higher 

forces when the penetration becomes large. With this approach the nodes are prevented 

from passing through the element in cases where the inertia or loads are high. By varying 
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the stiffness, penetrations are strictly removed and accurate distance between contact 

surfaces is maintained. 

The new contact algorithm has been implemented in DYNA3D and validated. To 

validate the algorithm, Hertz contact problem and contact patch test were used. In the 

Hertz contact problem, three different mesh size configurations were simulated and the 

results were compared to the theoretical value.  It is shown that with the new contact 

algorithm, the maximum stress in Hertz contact problem tends to converge towards exact 

solution or theoretical value when the element size becomes smaller. In contact patch 

test, a simple problem is simulated with three different mesh configurations and results 

are compared with the results from DYNA3D. It is shown that the new contact algorithm 

accurately computes and maintains the distance between contact surfaces with an 

acceptable variation in the stress along the contact surface. 

Shortcomings and Recommendations for Future Research 

The validation tests and example problems show that the new contact algorithm 

detects penetration at all times and applies the right magnitude of contact forces on the 

nodes to remove the penetration.  However, it has few exclusions and shortcomings that 

need to be addressed before it can be used to solve general non-linear dynamic problems.  

Solid elements and surfaces are not considered in the contact search. Even though it 

is a simple task of including the free surfaces of solid elements, the algorithm should be 

modified to consider zero thickness of the solid segments and also to treat their edges and 

corners differently. 
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The new algorithm does not delete failed elements that are in the contact. Provisions 

should be made in the algorithm such that the users have an option of deleting the 

elements from contact once they fail due to certain failure criteria.  

Initial penetrations are not taken into consideration in the new contact algorithm. If 

initial penetrations are present in the model at the beginning of the simulation, the 

simulation will crash due to high contact forces. Care should be taken to remove all initial 

penetrations before using the new contact algorithm.  

Every quadrilateral element is treated as two triangular elements while checking for 

penetrations. If an element is severely warped, as shown in Figure 6-1, the geometric 

surface that is seen by the contact algorithm varies depending on what order the element 

is split into triangles. A different three-node combination results in a different contact 

surface which in turn results in different end results. Care should be taken to avoid 

defining warped elements.  

Figure 6-1 Severely warped element 

The new contact algorithm considers only uniform circular cross-section for the 

beam elements. Other cross-sections such as rectangular and varying cross-section should 

be included to make the new contact algorithm more versatile.   

1 
4 

3 

2 
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Lastly, in this research, little focus was on the make the algorithm more efficient. As 

a result, the computation time required to simulate problems using new contact algorithm 

is significantly higher than the time required using current algorithms. The efficiency of 

the contact algorithm can be improved by optimizing the code. Future work should 

include optimizing the new algorithm to make it work seamlessly with rest of the 

DYNA3D code.  
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